Bicistronic DNA Vaccines Simultaneously Encoding HIV, HSV and HPV Antigens Promote CD8(+) T Cell Responses and Protective Immunity

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
SANTANA, Vinicius C.
DINIZ, Mariana O.
CARIRI, Francisco A. M. O.
VENTURA, Armando M.
CAMPOS, Marco A.
LIMA, Graciela K.
FERREIRA, Luis C. S.
Citação
PLOS ONE, v.8, n.8, article ID e71322, 10p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8(+) T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8(+) T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Palavras-chave
Referências
  1. Almeida RR, 2012, PLOS ONE, V7
  2. Appay V, 2008, NAT MED, V14, P623, DOI 10.1038/nm.f.1774
  3. Autran B, 2004, SCIENCE, V305, P205, DOI 10.1126/science.1100600
  4. Bagarazzi ML, 2012, SCI TRANSLATIONAL ME, V4
  5. Barber DL, 2003, J IMMUNOL, V171, P27
  6. Belshe RB, 2012, NEW ENGL J MED, V366, P34, DOI 10.1056/NEJMoa1103151
  7. Benvenisti L, 2001, VACCINE, V19, P3885, DOI 10.1016/S0264-410X(01)00125-6
  8. Buchbinder SP, 2008, LANCET, V372, P1881, DOI 10.1016/S0140-6736(08)61591-3
  9. Buckheit RW, 2012, J VIROL, V86, P13679, DOI 10.1128/JVI.02439-12
  10. Cai GF, 2009, IMMUNOL REV, V229, P244, DOI 10.1111/j.1600-065X.2009.00783.x
  11. Cheng WF, 2001, J CLIN INVEST, V108, P669, DOI 10.1172/JCI12346
  12. Cossarizza A, 2012, PLOS ONE, V7
  13. Croft M, 2003, NAT REV IMMUNOL, V3, P609, DOI 10.1038/nri1148
  14. DiMenna L, 2010, J IMMUNOL, V184, P5475, DOI 10.4049/jimmunol.0903808
  15. Diniz MO, 2010, CLIN VACCINE IMMUNOL, V17, P1576, DOI 10.1128/CVI.00264-10
  16. Diniz MO, 2011, BRAZ J MED BIOL RES, V44, P421, DOI [10.1590/S0100-879X2011007500039, 10.1590/S0100-879X2011000500007]
  17. Donnelly JJ, 1997, ANNU REV IMMUNOL, V15, P617, DOI 10.1146/annurev.immunol.15.1.617
  18. Dropulic LK, 2012, EXPERT REV VACCINES, V11, P1429, DOI [10.1586/erv.12.129, 10.1586/ERV.12.129]
  19. Garland SM, 2007, NEW ENGL J MED, V356, P1928, DOI 10.1056/NEJMoa061760
  20. Granger SW, 2003, CYTOKINE GROWTH F R, V14, P289, DOI 10.1016/S1359-6101(03)00031-5
  21. Khanna KM, 2003, IMMUNITY, V18, P593, DOI 10.1016/S1074-7613(03)00112-2
  22. Kong WP, 2003, J VIROL, V77, P12764, DOI 10.1128/JVI.77.23.12764-12772.2003
  23. Konishi E, 2006, VACCINE, V24, P2200, DOI 10.1016/j.vaccine.2005.11.002
  24. Kwissa M, 2000, J MOL MED-JMM, V78, P495, DOI 10.1007/s001090000135
  25. Lasaro MO, 2009, HUM VACCINES, V5, P6
  26. Lasaro MO, 2005, MICROBES INFECT, V7, P1541, DOI 10.1016/j.micinf.2005.05.024
  27. Lasaro MO, 2011, MOL THER, V19, P1727, DOI 10.1038/mt.2011.88
  28. Lasaro MO, 2008, NAT MED, V14, P205, DOI 10.1038/nm1704
  29. Liang R, 2007, VACCINE, V25, P5994, DOI 10.1016/j.vaccine.2007.05.036
  30. Lin K, 2010, IMMUNOL RES, V47, P86, DOI 10.1007/s12026-009-8141-6
  31. Lin KY, 1996, CANCER RES, V56, P21
  32. MacGregor RR, 1998, J INFECT DIS, V178, P92
  33. Manoj S, 2003, VIROLOGY, V313, P296, DOI 10.1016/S0042-6822(03)00325-8
  34. Marsters SA, 1997, J BIOL CHEM, V272, P14029, DOI 10.1074/jbc.272.22.14029
  35. Melief CJM, 2008, NAT REV CANCER, V8, P351, DOI 10.1038/nrc2373
  36. Mizuguchi H, 2000, MOL THER, V1, P376, DOI 10.1006/mthe.2000.0050
  37. Moniz M, 2003, FRONT BIOSCI, V8, pD55, DOI 10.2741/936
  38. MOUNTFORD PS, 1995, TRENDS GENET, V11, P179, DOI 10.1016/S0168-9525(00)89040-X
  39. Nikolic DS, 2010, J INVEST DERMATOL, V130, P352, DOI 10.1038/jid.2009.227
  40. Orr MT, 2007, CELL HOST MICROBE, V2, P172, DOI 10.1016/j.chom.2007.06.013
  41. Paavonen J, 2007, LANCET, V369, P2161, DOI 10.1016/S0140-6736(07)60946-5
  42. Porchia BFMM, 2011, MOL PHARMACEUT, V8, P2320, DOI 10.1021/mp200194s
  43. Saez-Cirion A, 2007, P NATL ACAD SCI USA, V104, P6776, DOI 10.1073/pnas.0611244104
  44. Sciortino MT, 2008, BIOCHEM PHARMACOL, V76, P1522, DOI 10.1016/j.bcp.2008.07.030
  45. Sciortino MT, 2008, CELL MICROBIOL, V10, P2297, DOI 10.1111/j.1462-5822.2008.01212.x
  46. Seder RA, 2000, NATURE, V406, P793, DOI 10.1038/35021239
  47. Shkreta L, 2004, VACCINE, V23, P114, DOI 10.1016/j.vaccine.2004.05.002
  48. Shoji M, 2012, PLOS ONE, V7
  49. Spear PG, 2003, J VIROL, V77, P10179, DOI 10.1128/JVI.77.19.10179-10185.2003
  50. van Steenwijk PJD, 2012, CANCER IMMUNOL IMMUN, V61, P1485, DOI 10.1007/s00262-012-1292-7
  51. Wang SD, 2004, MICROBES INFECT, V6, P759, DOI 10.1016/j.micinf.2004.03.007
  52. WATSON RJ, 1982, SCIENCE, V218, P381, DOI 10.1126/science.6289440
  53. WHO, 2012, GLOB REP UNAIDS REP
  54. Zhang HY, 2008, VACCINE, V26, P769, DOI 10.1016/j.vaccine.2007.11.093