Genomic constellation of human Rotavirus A strains identified in Northern Brazil: a 6-year follow-up (2010-2016)

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
INST MEDICINA TROPICAL SAO PAULO
Autores
SILVA-SALES, Marcelle
LEAL, Elcio
MILAGRES, Flavio Augusto de Padua
BRUSTULIN, Rafael
ARAUJO, Emerson Luiz Lima
DENG, Xutao
Citação
REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO, v.62, article ID e98, 13p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Surveillance of Rotavirus A (RVA) throughout the national territory is important to establish a more complete epidemiological-molecular scenario of this virus circulation in Brazil. The aim of the present study was to investigate the genetic diversity of RVA strains circulating in Tocantins State (Northern Brazil) during six years of post-vaccination followup (2010-2016). A total of 248 stool samples were screened by next generation sequencing and 107 (43.1%) nearly full length RVA genome sequences were obtained; one sample was co-infected with two RVA strains (G2/G8P[4]). Six G and P genotypes combinations were detected: G12P[8] strains (78.6%). as well as the G3P[8] (9.3%) and G1P[8] (0.9%) were associated with a Wa-like genogroup backbone. All G21 3 [4] (5.6%) and G8P[41 (2.8%) strains, including the mixed G2/G81 3 141 infection (0.9%) showed the DS-1-like genetic background. The two G12P[4] strains (1.9%) were associated with distinct genetic backbones: Wa-like and DS-1-like. The phylogenetic analysis revealed the circulation of lineages G1-I, G2-IV, G3-11E, G8-I and G12-111, and P[4]-V and P[8]-Ill of the VP7 and VP4 genes, respectively. Conserved clustering pattern and low genetic diversity were observed regarding VP1-VP3 and VP6, as well as NSP1-5 segments. We identified the same RVA circulation pattern reported in other Brazilian regions in the period of 2010-2016, suggesting that rural and low-income areas may not have a different RVA genotypic distribution compared to other parts of the country. The unique presentation of whole-genome data of RVA strains detected in the Tocantins State provides a baseline for monitoring variations in the genetic composition of RVA in this area.
Palavras-chave
Acute gastroenteritis, Rotavirus A, Brazil, Post-vaccine, Genomic Constellation
Referências
  1. Arana A, 2016, INFECT GENET EVOL, V44, P137, DOI 10.1016/j.meegid.2016.06.048
  2. Arroyo LH, 2020, CAD SAUDE PUBLICA, V36, DOI [10.1590/0102-311X00015619, 10.1590/0102-311x00015619]
  3. Banyai K, 2012, VACCINE, V30, pA122, DOI 10.1016/j.vaccine.2011.09.111
  4. Dulgheroff ACB, 2016, BRAZ J MICROBIOL, V47, P731, DOI 10.1016/j.bjm.2016.04.012
  5. Carvalho-Costa FA, 2019, BMC PEDIATR, V19, DOI 10.1186/s12887-019-1415-9
  6. Carvalho-Costa FA, 2011, PEDIATR INFECT DIS J, V30, pS35, DOI 10.1097/INF.0b013e3181fefd5f
  7. Damanka SA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218790
  8. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  9. Doro R, 2014, INFECT GENET EVOL, V28, P446, DOI 10.1016/j.meegid.2014.08.017
  10. Esona MD, 2009, J MED VIROL, V81, P937, DOI 10.1002/jmv.21468
  11. Flannery B, 2013, VACCINE, V31, P1523, DOI 10.1016/j.vaccine.2013.01.004
  12. Giammanco GM, 2014, J GEN VIROL, V95, P91, DOI 10.1099/vir.0.056788-0
  13. Gomez MM, 2014, INFECT GENET EVOL, V28, P486, DOI 10.1016/j.meegid.2014.09.012
  14. Guerra SFS, 2019, ARCH VIROL, V164, P2107, DOI 10.1007/s00705-019-04295-w
  15. Ianiro G, 2014, INFECT GENET EVOL, V21, P129, DOI 10.1016/j.meegid.2013.10.029
  16. Jere KC, 2011, J MED VIROL, V83, P2018, DOI 10.1002/jmv.22207
  17. Kumar S, 2016, MOL BIOL EVOL, V33, P1870, DOI [10.1093/molbev/msw054, 10.1093/molbev/msv279]
  18. Luchs A, 2019, J GEN VIROL, V100, P7, DOI 10.1099/jgv.0.001171
  19. Luchs A, 2016, ACTA TROP, V156, P87, DOI 10.1016/j.actatropica.2015.12.008
  20. Luchs A, 2015, REV INST MED TROP SP, V57, P305, DOI 10.1590/S0036-46652015000400006
  21. Luchs A, 2014, J GEN VIROL, V95, P627, DOI 10.1099/vir.0.058099-0
  22. da Silva MFM, 2017, J MED VIROL, V89, P64, DOI 10.1002/jmv.24605
  23. da Silva MFM, 2015, INFECT GENET EVOL, V30, P206, DOI 10.1016/j.meegid.2014.12.030
  24. Matthijnssens J, 2008, ARCH VIROL, V153, P1621, DOI 10.1007/s00705-008-0155-1
  25. Matthijnssens J, 2008, J VIROL, V82, P3204, DOI 10.1128/JVI.02257-07
  26. Mijatovic-Rustempasic S, 2014, INFECT GENET EVOL, V21, P214, DOI 10.1016/j.meegid.2013.11.004
  27. Moore NE, 2015, J CLIN MICROBIOL, V53, P15, DOI 10.1128/JCM.02029-14
  28. Mukherjee A, 2013, J MED VIROL, V85, P537, DOI 10.1002/jmv.23483
  29. Page N, 2010, J MED VIROL, V82, P2073, DOI 10.1002/jmv.21912
  30. Pietsch C, 2009, J CLIN MICROBIOL, V47, P3569, DOI 10.1128/JCM.01471-09
  31. Roczo-Farkas S, 2016, COMMUN DIS INTELL, V40, pE527
  32. Soares LD, 2014, J MED VIROL, V86, P1065, DOI 10.1002/jmv.23797
  33. Stupka JA, 2012, J CLIN VIROL, V54, P162, DOI 10.1016/j.jcv.2012.02.011
  34. THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673
  35. Troeger C, 2018, JAMA PEDIATR, V172, P958, DOI 10.1001/jamapediatrics.2018.1960
  36. Wandera EA, 2019, INFECT GENET EVOL, V68, P231, DOI 10.1016/j.meegid.2018.12.004
  37. Zeller M, 2017, PEERJ, V5, DOI 10.7717/peerj.2733
  38. Zhang S, 2014, J VIROL, V88, P9842, DOI 10.1128/JVI.01562-14