Noonan syndrome patients beyond the obvious phenotype: A potential unfavorable metabolic profile

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
AMERICAN JOURNAL OF MEDICAL GENETICS PART A, v.185, n.3, p.774-780, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Noonan syndrome (NS) and NS related disorders (NRD) are frequent monogenic diseases. Pathogenic variants in PTPN11 are observed in approximately 50% of these NS patients. Several pleiotropic phenotypes have previously been described in this condition. This study aimed at characterizing glucose and lipid profiles in patients with NS/NRD. We assessed fasting blood glucose, insulin, cholesterol (total and fractions), and triglyceride (TG) levels in 112 prepubertal children and 73 adults. Additionally, an oral glucose tolerance test (OGTT) was performed in 40 children and 54 adults. Data were analyzed between age groups according to the presence (+) or absence (-) of PTPN11 mutation. Prepubertal patients with NS/NRD were also compared with a control group. Despite the lean phenotype of children with NS/NRD, they presented an increased frequency of low HDL-cholesterol (63% in PTPN11+, 59% in PTPN11- and 16% in control, p < .001) and high TG levels (29% in PTPN11+, 18% in PTPN11- and 2.3% in control). PTPN11+ patients had a higher median HOMA-IR (1.0, ranged from 0.3 to 3.2) in comparison with PTPN11- (0.6; 0.2 to 4.4) and controls (0.6; 0.4 to 1.4, p = .027). Impaired glucose tolerance was observed in 19% (10:54) of lean adults with NS/NRD assessed by OGTT. Moreover, women with PTPN11 mutations had lower HDL-cholesterol levels than those without. Our results suggest that children and young adult patients with NS/NRD have an unfavorable metabolic profile characterized by low HDL, a tendency of elevated TGs, and glucose metabolism impairment despite a lean phenotype.
Palavras-chave
glucose, insulin, metabolism, Noonan syndrome, PTPN11, RASopathy
Referências
  1. Amer Diabet Assoc, 2013, DIABETES CARE, V36, pS67, DOI 10.2337/dc13-S067
  2. Binder G, 2012, J PEDIATR-US, V161, P501, DOI 10.1016/j.jpeds.2012.02.043
  3. da Silva FM, 2016, AM J MED GENET A, V170, P1525, DOI 10.1002/ajmg.a.37639
  4. da Silva RC, 2016, ARQ BRAS CARDIOL, V107, P10, DOI 10.5935/abc.20160091
  5. Dard L, 2018, BBA-BIOENERGETICS, V1859, P845, DOI 10.1016/j.bbabio.2018.05.003
  6. Elkins C, 2019, J PEDIATR HEALTH CAR, V33, P494, DOI 10.1016/j.pedhc.2019.02.009
  7. Faludi AA, 2017, ARQ BRAS CARDIOL, V109, P1, DOI [10.5935/abc.20170121, 10.5935/abc.20170188]
  8. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  9. Garcez MR, 2014, ARQ BRAS CARDIOL, V103, P476, DOI 10.5935/abc.20140156
  10. He Z, 2013, P NATL ACAD SCI USA, V110, pE79, DOI 10.1073/pnas.1213000110
  11. Hopkins PN, 2013, PHYSIOL REV, V93, P1317, DOI 10.1152/physrev.00004.2012
  12. Jager J, 2011, DIABETOLOGIA, V54, P180, DOI 10.1007/s00125-010-1944-0
  13. Jamshidi Y, 2007, ATHEROSCLEROSIS, V194, pE26, DOI 10.1016/j.atherosclerosis.2006.12.013
  14. Jorge AAL, 2009, HORM RES, V71, P185, DOI 10.1159/000201106
  15. Kuczmarski RJ, 2000, ADV DATA, V314, P1, DOI 10.1186/1475-2875-6-146
  16. Liu ML, 2020, CLIN NUTR, V39, P942, DOI 10.1016/j.clnu.2019.03.039
  17. Liu MX, 2012, BBA-MOL CELL BIOL L, V1821, P770, DOI 10.1016/j.bbalip.2011.09.020
  18. Lu YC, 2008, J LIPID RES, V49, P2582, DOI 10.1194/jlr.M800232-JLR200
  19. Malaquias AC, 2012, AM J MED GENET A, V158A, P2700, DOI 10.1002/ajmg.a.35519
  20. Matsuo K, 2010, J BIOL CHEM, V285, P39750, DOI 10.1074/jbc.M110.153734
  21. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  22. NOONAN JA, 1968, AM J DIS CHILD, V116, P373, DOI 10.1001/archpedi.1968.02100020377005
  23. Pinto KA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194190
  24. Tajan M, 2018, ENDOCR REV, V39, P676, DOI 10.1210/er.2017-00232
  25. Tajan M, 2015, EUR J MED GENET, V58, P509, DOI 10.1016/j.ejmg.2015.08.005
  26. Tajan M, 2014, P NATL ACAD SCI USA, V111, pE4494, DOI 10.1073/pnas.1406107111
  27. Tartaglia M, 2005, ANNU REV GENOM HUM G, V6, P45, DOI 10.1146/annurev.genom.6.080604.162305
  28. Tartaglia M, 2011, BEST PRACT RES CL EN, V25, P161, DOI 10.1016/j.beem.2010.09.002
  29. Tidyman William E, 2016, Curr Genet Med Rep, V4, P57
  30. VANDERBURGT I, 1994, AM J MED GENET, V53, P187, DOI 10.1002/ajmg.1320530213
  31. Wit JM, 2016, EUR J ENDOCRINOL, V174, pR145, DOI 10.1530/EJE-15-0937
  32. Yamamoto GL, 2015, J MED GENET, V52, P413, DOI 10.1136/jmedgenet-2015-103018
  33. Zhang EE, 2004, P NATL ACAD SCI USA, V101, P16064, DOI 10.1073/pnas.0405041101
  34. Zhang SS, 2009, P NATL ACAD SCI USA, V106, P7531, DOI 10.1073/pnas.0811715106