Cortical spreading depolarization and ketamine:a short systematic review

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Citação
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, v.51, n.2, p.145-151, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction. - Cortical spreading depolarization (SD) describes pathological waves characterized by an almost complete sustained depolarization of neurons and astrocytes that spreads throughout the cortex. In this study, we carried out a qualitative review of all available evidence, clinical and preclinical, on the use of ketamine in SD. Methods. - We performed a systematic review of Medline, with no restrictions regarding publishing date or language, in search of articles reporting the use of ketamine in SD. The search string was composed of ""ketamine,"" ""spreading,"" ""depolarization,"" and ""depression"" in both (AND) and (OR) combinations. Results. - Twenty studies were included in the final synthesis. Many studies showed that ketamine effectively blocks SD in rats, swine, and humans. The first prospective randomized trial was published in 2018. Ten patients with severe traumatic brain injury or subarachnoid hemorrhage were enrolled, and ketamine showed a significant, dose-dependent effect on the reduction of SD. Conclusion. - The available evidence from preclinical studies is helping to translate the role of ketamine in blocking spreading depolarizations to clinical practice, in the settings of migraine with aura, traumatic brain injury, subarachnoid hemorrhage, and hemorrhagic and ischemic stroke. More randomized controlled trials are needed to determine whether interrupting the ketamine-blockable SDs effectively leads to an improvement in outcome and to assess the real occurrence of adverse effects.
Palavras-chave
Cortical spreading depression, Critical care, Ketamine, N-methyl-D-aspartate, Receptors
Referências
  1. Afridi SK, 2013, NEUROLOGY, V80, P642, DOI 10.1212/WNL.0b013e3182824e66
  2. AMEMORI T, 1990, BRAIN RES, V519, P351, DOI 10.1016/0006-8993(90)90101-G
  3. Carlson AP, 2019, J NEUROSURG, V131, P1773, DOI 10.3171/2018.7.JNS181478
  4. Carlson AP, 2019, J NEUROSURG, V130, P1513, DOI 10.3171/2017.12.JNS171665
  5. Del-Bel EA, 2000, BRAZ J MED BIOL RES, V33, P521, DOI 10.1590/S0100-879X2000000500006
  6. Dijkhuizen RM, 1999, BRAIN RES, V840, P194, DOI 10.1016/S0006-8993(99)01769-2
  7. DRAGUNOW M, 1990, EXP NEUROL, V107, P236, DOI 10.1016/0014-4886(90)90141-E
  8. Dreier JP, 2007, EXP BIOL MED, V232, P204
  9. Dreier JP, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00373
  10. Dreier JP, 2018, ANN NEUROL, V83, P295, DOI 10.1002/ana.25147
  11. Dreier JP, 2015, NEURON, V86, P902, DOI 10.1016/j.neuron.2015.04.004
  12. Dreier JP, 2012, BRAIN, V135, P259, DOI 10.1093/brain/awr303
  13. Dreier JP, 2011, NAT MED, V17, P439, DOI 10.1038/nm.2333
  14. Dreier JP, 2009, BRAIN, V132, P1866, DOI 10.1093/brain/awp102
  15. GORELOVA NA, 1987, ELECTROEN CLIN NEURO, V66, P440, DOI 10.1016/0013-4694(87)90213-6
  16. Hartings JA, 2003, J NEUROSCI, V23, P11602
  17. Hartings JA, 2020, JAMA NEUROL, V77, P489, DOI 10.1001/jamaneurol.2019.4476
  18. Hartings JA, 2017, J CEREBR BLOOD F MET, V37, P1571, DOI 10.1177/0271678X16654495
  19. Hartings JA, 2011, LANCET NEUROL, V10, P1058, DOI 10.1016/S1474-4422(11)70243-5
  20. Hartings JA, 2009, J NEUROTRAUM, V26, P1857, DOI [10.1089/neu.2009.0961, 10.1089/neu.2009-0961]
  21. HERNANDEZCACERES J, 1987, BRAIN RES, V437, P360, DOI 10.1016/0006-8993(87)91652-0
  22. Hertle DN, 2012, BRAIN, V135, P2390, DOI 10.1093/brain/aws152
  23. Himmelseher S, 1996, ANESTH ANALG, V83, P505, DOI 10.1097/00000539-199609000-00011
  24. Himmelseher S, 2005, ANESTH ANALG, V101, P524, DOI 10.1213/01.ANE.0000160585.43587.5B
  25. HOFFMAN WE, 1992, ANESTHESIOLOGY, V76, P755, DOI 10.1097/00000542-199205000-00014
  26. Kamp J, 2019, EXPERT OPIN DRUG MET, V15, P1033, DOI 10.1080/17425255.2019.1689958
  27. Kaube H, 2000, NEUROLOGY, V55, P139, DOI 10.1212/WNL.55.1.139
  28. Kazemi H, 2014, IRAN J CHILD NEUROL, V8, P6
  29. Kruger H, 1999, NEUROREPORT, V10, P2651
  30. Lauritzen M, 2011, J CEREBR BLOOD F MET, V31, P17, DOI 10.1038/jcbfm.2010.191
  31. Lavender E, 2020, BEHAV BRAIN RES, V390, DOI 10.1016/j.bbr.2020.112631
  32. Leao AAP, 1944, J NEUROPHYSIOL, V7, P359
  33. LEAO AAP, 1947, J NEUROPHYSIOL, V10, P409, DOI 10.1152/jn.1947.10.6.409
  34. Luckl J, 2018, BRAIN, V141, P1734, DOI 10.1093/brain/awy102
  35. Major S, 2020, GEROSCIENCE, V42, P57, DOI 10.1007/s11357-019-00142-7
  36. MARRANNES R, 1988, BRAIN RES, V457, P226, DOI 10.1016/0006-8993(88)90690-7
  37. MARTIN H, 1994, NEUROSCI LETT, V180, P285, DOI 10.1016/0304-3940(94)90540-1
  38. MIES G, 1993, NEUROREPORT, V4, P709, DOI 10.1097/00001756-199306000-00027
  39. Muller M, 1998, BRAIN RES, V812, P1, DOI 10.1016/S0006-8993(98)00812-9
  40. Murphy TH, 2008, J NEUROSCI, V28, P1756, DOI 10.1523/JNEUROSCI.5128-07.2008
  41. Nagata S, 2006, SURG NEUROL, V66, P50, DOI 10.1016/j.surneu.2005.12.017
  42. Pacheco JM, 2019, ENEURO, V6, DOI 10.1523/ENEURO.0070-19.2019
  43. Petzold GC, 2005, STROKE, V36, P1270, DOI 10.1161/01.STR.0000166023.51307.e0
  44. Proescholdt M, 2001, BRAIN RES, V904, P245, DOI 10.1016/S0006-8993(01)02465-9
  45. RANSOM BR, 1990, NEUROLOGY, V40, P1399, DOI 10.1212/WNL.40.9.1399
  46. RASHIDYPOUR A, 1995, BRAIN RES, V693, P64, DOI 10.1016/0006-8993(95)00692-J
  47. Reeker W, 2000, CAN J ANAESTH, V47, P572, DOI 10.1007/BF03018950
  48. Reinhart KM, 2018, EXP NEUROL, V305, P121, DOI 10.1016/j.expneurol.2018.04.007
  49. Sakowitz OW, 2009, STROKE, V40, pE519, DOI 10.1161/STROKEAHA.109.549303
  50. Sanchez-Porras R, 2017, J CEREBR BLOOD F MET, V37, P1720, DOI 10.1177/0271678X16646586
  51. Sanchez-Porras R, 2014, NEUROPHARMACOLOGY, V84, P52, DOI 10.1016/j.neuropharm.2014.04.018
  52. Santos E, 2019, CRIT CARE, V23, DOI 10.1186/s13054-019-2711-3
  53. Schiefecker AJ, 2015, NEUROCRIT CARE, V22, P293, DOI 10.1007/s12028-014-0050-4
  54. Schoknecht K, 2021, J CEREBR BLOOD F MET, V41, P413, DOI 10.1177/0271678X20915801
  55. SHAPIRA Y, 1992, J NEUROSURG ANESTH, V4, P231, DOI 10.1097/00008506-199210000-00001
  56. Somjen GG, 2001, PHYSIOL REV, V81, P1065
  57. Sueiras Maria, 2021, J Clin Neurophysiol, V38, P47, DOI 10.1097/WNP.0000000000000648
  58. Tong CK, 2000, J NEUROPHYSIOL, V84, P2449
  59. VERHAEGEN M, 1992, BRAIN RES, V581, P153, DOI 10.1016/0006-8993(92)90355-D
  60. Zanos P, 2018, PHARMACOL REV, V70, P621, DOI 10.1124/pr.117.015198
  61. Zheng ZL, 2020, ACTA NEUROCHIR SUPPL, V127, P97, DOI 10.1007/978-3-030-04615-6_16