The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
CALDER, Philip C.
CURI, Rui
NEWSHOLME, Philip
SETHI, Jaswinder K.
SILVEIRA, Loreana S.
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.22, n.16, article ID 8460, 16p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Macrophages and lymphocytes demonstrate metabolic plasticity, which is dependent partly on their state of activation and partly on the availability of various energy yielding and biosynthetic substrates (fatty acids, glucose, and amino acids). These substrates are essential to fuel-based metabolic reprogramming that supports optimal immune function, including the inflammatory response. In this review, we will focus on metabolism in macrophages and lymphocytes and discuss the role of fatty acids in governing the phenotype, activation, and functional status of these important cells. We summarize the current understanding of the pathways of fatty acid metabolism and related mechanisms of action and also explore possible new perspectives in this exciting area of research.
Palavras-chave
immune cells, lipids, fatty acids, metabolism, leukocytes, macrophages, lymphocytes, inflammation, cytokines
Referências
  1. Adolph S, 2012, CURR MICROBIOL, V65, P649, DOI 10.1007/s00284-012-0207-3
  2. Akkaya M, 2018, NAT IMMUNOL, V19, P871, DOI 10.1038/s41590-018-0156-5
  3. Al-Rashed F, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-73912-5
  4. Alarcon-Barrera JC, 2020, ANAL BIOANAL CHEM, V412, P2353, DOI 10.1007/s00216-020-02460-8
  5. ANEL A, 1990, BIOCHIM BIOPHYS ACTA, V1044, P323, DOI 10.1016/0005-2760(90)90076-A
  6. ARDAWI MSM, 1991, J LAB CLIN MED, V118, P26
  7. Baker EJ, 2020, BBA-MOL CELL BIOL L, V1865, DOI 10.1016/j.bbalip.2020.158662
  8. Baker EJ, 2018, MOL ASPECTS MED, V64, P169, DOI 10.1016/j.mam.2018.08.002
  9. Balmer ML, 2016, IMMUNITY, V44, P1312, DOI 10.1016/j.immuni.2016.03.016
  10. Balyan R, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21217972
  11. Batista-Gonzalez A, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02993
  12. Margina D, 2020, FOOD CHEM TOXICOL, V143, DOI 10.1016/j.fct.2020.111558
  13. Martinez Fernando O, 2014, F1000Prime Rep, V6, P13, DOI 10.12703/P6-13
  14. Milasta S, 2016, IMMUNITY, V44, P88, DOI 10.1016/j.immuni.2015.12.002
  15. Montenegro-Burke JR, 2016, PROSTAG OTH LIPID M, V127, P1, DOI 10.1016/j.prostaglandins.2016.11.002
  16. Muroski ME, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05556-x
  17. Nicholas DA, 2019, CELL METAB, V30, P447, DOI 10.1016/j.cmet.2019.07.004
  18. Nomura M, 2016, NAT IMMUNOL, V17, P216, DOI 10.1038/ni.3366
  19. O'Neill LAJ, 2016, NAT REV IMMUNOL, V16, P553, DOI 10.1038/nri.2016.70
  20. O'Rourke RW, 2005, OBES SURG, V15, P1463, DOI 10.1381/096089205774859308
  21. Pan YD, 2017, NATURE, V543, P252, DOI 10.1038/nature21379
  22. Silveira Loreana Sanches, 2020, Exerc Immunol Rev, V26, P10
  23. Park M, 2020, BIOCHEM BIOPH RES CO, V525, P786, DOI 10.1016/j.bbrc.2020.02.154
  24. Passos MEP, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0385-2
  25. Patsoukis N, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7692
  26. Pauls SD, 2020, INT J BIOCHEM CELL B, V119, DOI 10.1016/j.biocel.2019.105662
  27. Pearce EL, 2009, NATURE, V460, P103, DOI 10.1038/nature08097
  28. Petrovic S., 2016, ENCY FOOD HLTH, P623
  29. Poledne R, 2020, NUTRIENTS, V12, DOI 10.3390/nu12010008
  30. Qiu J, 2019, CELL REP, V27, P2063, DOI 10.1016/j.celrep.2019.04.022
  31. Rocha DM, 2016, ATHEROSCLEROSIS, V244, P211, DOI 10.1016/j.atherosclerosis.2015.11.015
  32. Rowe DC, 2006, P NATL ACAD SCI USA, V103, P6299, DOI 10.1073/pnas.0510041103
  33. Sokola-Wysoczanska E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10101561
  34. Silveira LS, 2016, CRIT REV EUKAR GENE, V26, P115, DOI 10.1615/CritRevEukaryotGeneExpr.2016015920
  35. Schaefer MB, 2016, INFLAMM RES, V65, P881, DOI 10.1007/s00011-016-0971-9
  36. Seike T, 2020, J GASTROENTEROL, V55, P701, DOI 10.1007/s00535-020-01679-7
  37. Seim GL, 2020, BIO-PROTOCOL, V10, DOI 10.21769/BioProtoc.3693
  38. Shaikh SR, 2008, SCAND J IMMUNOL, V68, P30, DOI 10.1111/j.1365-3083.2008.02113.x
  39. Souza CO, 2020, BBA-MOL CELL BIOL L, V1865, DOI 10.1016/j.bbalip.2020.158776
  40. Souza CO, 2017, CLIN EXP PHARMACOL P, V44, P566, DOI 10.1111/1440-1681.12736
  41. Staiger H, 2004, DIABETES, V53, P3209, DOI 10.2337/diabetes.53.12.3209
  42. Sukumar M, 2013, J CLIN INVEST, V123, P4479, DOI 10.1172/JCI69589
  43. Tam TH, 2020, J BIOL CHEM, V295, P4902, DOI 10.1074/jbc.RA119.010868
  44. Van den Bossche J, 2018, CELL IMMUNOL, V330, P54, DOI 10.1016/j.cellimm.2018.01.009
  45. Van den Bossche J, 2017, TRENDS IMMUNOL, V38, P395, DOI 10.1016/j.it.2017.03.001
  46. van der Weerd K, 2012, DIABETES, V61, P401, DOI 10.2337/db11-1065
  47. Berod L, 2014, NAT MED, V20, P1327, DOI 10.1038/nm.3704
  48. van der Windt GJW, 2013, P NATL ACAD SCI USA, V110, P14336, DOI 10.1073/pnas.1221740110
  49. van der Windt GJW, 2012, IMMUNITY, V36, P68, DOI 10.1016/j.immuni.2011.12.007
  50. Varga T, 2016, IMMUNITY, V45, P1038, DOI 10.1016/j.immuni.2016.10.016
  51. Wang RN, 2011, IMMUNITY, V35, P871, DOI 10.1016/j.immuni.2011.09.021
  52. Wang S, 2009, BRIT J NUTR, V102, P497, DOI 10.1017/S0007114509231758
  53. Wei XC, 2016, NATURE, V539, P294, DOI 10.1038/nature20117
  54. Weisel FJ, 2020, NAT IMMUNOL, V21, P331, DOI 10.1038/s41590-020-0598-4
  55. Williams JW, 2018, J AM COLL CARDIOL, V72, P2166, DOI 10.1016/j.jacc.2018.08.2148
  56. Williams NC, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00141
  57. Wong SW, 2009, J BIOL CHEM, V284, P27384, DOI 10.1074/jbc.M109.044065
  58. Blagih J, 2015, IMMUNITY, V42, P41, DOI 10.1016/j.immuni.2014.12.030
  59. Xu RB, 2017, J NEUROSURG, V127, P522, DOI 10.3171/2016.7.JNS1668
  60. Yang WJ, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18262-6
  61. Yang WQ, 2017, MOL NUTR FOOD RES, V61, DOI 10.1002/mnfr.201601075
  62. Zhang XM, 2020, INTENS CARE MED EXP, V8, DOI 10.1186/s40635-020-00316-0
  63. Zhao NQ, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0207-6
  64. Boothby M, 2017, IMMUNITY, V46, P743, DOI 10.1016/j.immuni.2017.04.009
  65. Bouhlel MA, 2007, CELL METAB, V6, P137, DOI 10.1016/j.cmet.2007.06.010
  66. Brookens Shawna K, 2021, Immunometabolism, V3, DOI 10.20900/immunometab20210011
  67. Buck MD, 2016, CELL, V166, P63, DOI 10.1016/j.cell.2016.05.035
  68. BURNS CP, 1976, BLOOD, V47, P431
  69. CALDER PC, 1994, BIOCHEM J, V300, P509, DOI 10.1042/bj3000509
  70. CALDER PC, 1993, BRAZ J MED BIOL RES, V26, P901
  71. CALDER PC, 1990, BIOCHEM J, V269, P807, DOI 10.1042/bj2690807
  72. CALDER PC, 1995, P NUTR SOC, V54, P65, DOI 10.1079/PNS19950038
  73. Calder PC, 2020, P NUTR SOC, V79, P404, DOI 10.1017/S0029665120007077
  74. Calder PC, 2015, JPEN-PARENTER ENTER, V39, p18S, DOI 10.1177/0148607115595980
  75. Calder PC, 2015, BBA-MOL CELL BIOL L, V1851, P469, DOI 10.1016/j.bbalip.2014.08.010
  76. Calder PC, 2013, P NUTR SOC, V72, P299, DOI 10.1017/S0029665113001286
  77. Caro-Maldonado A, 2014, J IMMUNOL, V192, P3626, DOI 10.4049/jimmunol.1302062
  78. Carroll RG, 2018, J BIOL CHEM, V293, P5509, DOI 10.1074/jbc.RA118.001921
  79. Castoldi A, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17881-3
  80. Chan KL, 2015, J BIOL CHEM, V290, P16979, DOI 10.1074/jbc.M115.646992
  81. Chen M, 2015, J IMMUNOL, V194, P2607, DOI 10.4049/jimmunol.1403001
  82. Chen YL, 2019, CIRC RES, V125, P1087, DOI 10.1161/CIRCRESAHA.119.315833
  83. Cluxton D, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00115
  84. Cretenet G, 2016, SCI REP-UK, V6, DOI 10.1038/srep24129
  85. Cucchi D, 2020, CARDIOVASC RES, V116, P1006, DOI 10.1093/cvr/cvz208
  86. Cullberg KB, 2014, NUTR DIABETES, V4, DOI 10.1038/nutd.2014.10
  87. Curi R, 2017, CLIN SCI, V131, P1329, DOI 10.1042/CS20170220
  88. Dang EV, 2011, CELL, V146, P772, DOI 10.1016/j.cell.2011.07.033
  89. Dangardt F, 2010, ATHEROSCLEROSIS, V212, P580, DOI 10.1016/j.atherosclerosis.2010.06.046
  90. Davanso Mariana Rodrigues, 2020, Clin Sci (Lond), DOI 10.1042/CS20201348
  91. Eguchi K, 2012, CELL METAB, V15, P518, DOI 10.1016/j.cmet.2012.01.023
  92. el Hage A, 2021, CANCERS, V13, DOI 10.3390/cancers13061359
  93. Elagizi A, 2021, NUTRIENTS, V13, DOI 10.3390/nu13010204
  94. Frauwirth KA, 2002, IMMUNITY, V16, P769, DOI 10.1016/S1074-7613(02)00323-0
  95. Freemerman AJ, 2014, J BIOL CHEM, V289, P7884, DOI 10.1074/jbc.M113.522037
  96. Fu GT, 2021, NATURE, V595, P724, DOI 10.1038/s41586-021-03692-z
  97. Garcia-Cao I, 2012, CELL, V149, P49, DOI 10.1016/j.cell.2012.02.030
  98. Geltink RIK, 2018, ANNU REV IMMUNOL, V36, P461, DOI 10.1146/annurev-immunol-042617-053019
  99. Geyeregger R, 2005, J LEUKOCYTE BIOL, V77, P680, DOI 10.1189/jlb.1104687
  100. Ghanim H, 2004, CIRCULATION, V110, P1564, DOI 10.1161/01.CIR.0000142055.53122.FA
  101. Gianfrancesco MA, 2019, BBA-MOL CELL BIOL L, V1864, P1017, DOI 10.1016/j.bbalip.2019.04.001
  102. Guesdon W, 2018, J NUTR BIOCHEM, V53, P72, DOI 10.1016/j.jnutbio.2017.10.009
  103. Gupta SS, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01013
  104. Han LM, 2010, NUCLEIC ACIDS RES, V38, P7458, DOI 10.1093/nar/gkq609
  105. Hauser A.E., 2015, MOL BIOL B CELLS, V2nd ed., P187
  106. He JL, 2019, INT IMMUNOPHARMACOL, V75, DOI 10.1016/j.intimp.2019.105816
  107. Herrera E, 2000, EMBO J, V19, P472, DOI 10.1093/emboj/19.3.472
  108. Howie D, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01949
  109. Hradilkova K, 2019, ARTHRITIS RHEUMATOL, V71, P1756, DOI 10.1002/art.40939
  110. Hubler MJ, 2016, J NUTR BIOCHEM, V34, P1, DOI 10.1016/j.jnutbio.2015.11.002
  111. Jellusova J, 2017, NAT IMMUNOL, V18, P303, DOI 10.1038/ni.3664
  112. Johnson AR, 2016, MOL METAB, V5, P506, DOI 10.1016/j.molmet.2016.04.005
  113. Kalugotla G, 2019, J LEUKOCYTE BIOL, V106, P803, DOI 10.1002/JLB.3HI0219-045RR
  114. Khalsa JK, 2019, IMMUNOLOGY, V158, P104, DOI 10.1111/imm.13098
  115. Kim YC, 2019, NAT CHEM BIOL, V15, P907, DOI 10.1038/s41589-019-0344-0
  116. Korbecki J, 2019, INFLAMM RES, V68, P915, DOI 10.1007/s00011-019-01273-5
  117. Laine PS, 2007, BIOCHEM BIOPH RES CO, V358, P150, DOI 10.1016/j.bbrc.2007.04.092
  118. LaRosa DF, 2008, J ALLERGY CLIN IMMUN, V121, pS364, DOI 10.1016/j.jaci.2007.06.016
  119. Lau YCC, 2020, FASEB J, V34, P9982, DOI 10.1096/fj.202000669RR
  120. Lee J, 2014, J IMMUNOL, V192, P3190, DOI 10.4049/jimmunol.1302985
  121. Lee JY, 2001, J BIOL CHEM, V276, P16683, DOI 10.1074/jbc.M011695200
  122. Lefere S, 2019, JHEP REP, V1, P30, DOI 10.1016/j.jhepr.2019.02.004
  123. Liu XJ, 2021, J IMMUNOL, V206, P883, DOI 10.4049/jimmunol.1901444
  124. Maciolek JA, 2014, CURR OPIN IMMUNOL, V27, P60, DOI 10.1016/j.coi.2014.01.006
  125. MacIver NJ, 2013, ANNU REV IMMUNOL, V31, P259, DOI 10.1146/annurev-immunol-032712-095956