Active vs. reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex

Carregando...
Imagem de Miniatura
Citações na Scopus
71
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
Autores
GUPTA, Nikita
LAZARO-MUNOZ, Gabriel
SEARS, Robert M.
KIM, Soojeong
MOSCARELLO, Justin M.
LEDOUX, Joseph E.
CAIN, Christopher K.
Citação
LEARNING & MEMORY, v.20, n.8, p.446-452, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the behavioral differences between good and poor avoiders to elucidate the AA neurocircuit. Rats received Sidman AA training and expression of the activity-dependent immediate-early gene c-fos was measured after a shock-free AA test. Six brain regions with known or putative roles in AA were evaluated: amygdala, periaqueductal gray, nucleus accumbens, dorsal striatum, prefrontal cortex (PFC), and hippocampus. Good avoiders showed little Pavlovian freezing and high AA rates at test, the opposite of poor avoiders. Although c-Fos activation was observed throughout the brain, differential activation was found only in subregions of amygdala and PFC. Interestingly, c-Fos correlated with avoidance and freezing in only five of 20 distinct areas evaluated: lateral amygdala, central amygdala, medial amygdala, basal amygdala, and infralimbic PFC. Thus, activity in specific amygdala-PFC circuits likely mediates the competition between instrumental actions and Pavlovian reactions after AA training. Individual differences in AA behavior, long considered a nuisance by researchers, may be the key to elucidating the AA neurocircuit and understanding pathological response profiles.
Palavras-chave
Referências
  1. Anglada-Figueroa D, 2005, J NEUROSCI, V25, P9680, DOI 10.1523/JNEUROSCI.2600-05.2005
  2. BAUM M, 1971, BEHAV RES THER, V9, P249, DOI 10.1016/0005-7967(71)90010-6
  3. BOLLES RC, 1969, J COMP PHYSIOL PSYCH, V68, P355, DOI 10.1037/h0027536
  4. BOLLES RC, 1964, J EXP ANAL BEHAV, V7, P315, DOI 10.1901/jeab.1964.7-315
  5. Cain CK, 2008, HBK BEHAV NEUROSCI, V17, P103, DOI 10.1016/S1569-7339(07)00007-0
  6. Choi JS, 2010, LEARN MEMORY, V17, P139, DOI 10.1101/lm.1676610
  7. Church RM, 1989, AVERSION AVOIDANCE A, P403
  8. Ciocchi S, 2010, NATURE, V468, P277, DOI 10.1038/nature09559
  9. Delgado MR, 2006, BIOL PSYCHOL, V73, P39, DOI 10.1016/j.biopsycho.2006.01.006
  10. Duncan GE, 1996, BRAIN RES, V713, P79, DOI 10.1016/0006-8993(95)01486-1
  11. Gozzi A, 2010, NEURON, V67, P656, DOI 10.1016/j.neuron.2010.07.008
  12. Han JH, 2007, SCIENCE, V316, P457, DOI 10.1126/science.1139438
  13. Haubensak W, 2010, NATURE, V468, P270, DOI 10.1038/nature09553
  14. Hefner K, 2008, J NEUROSCI, V28, P8074, DOI 10.1523/JNEUROSCI.4904-07.2008
  15. Herdade KCP, 2006, BEHAV BRAIN RES, V172, P316, DOI 10.1016/j.bbr.2006.05.021
  16. Herry C, 2004, EUR J NEUROSCI, V20, P781, DOI 10.1111/j.1460-9568.2004.03542.x
  17. HITCHCOCK JM, 1991, BEHAV NEUROSCI, V105, P826, DOI 10.1037/0735-7044.105.6.826
  18. KIM JJ, 1993, BEHAV NEUROSCI, V107, P1093
  19. Knapska E, 2007, PHYSIOL REV, V87, P1113, DOI 10.1152/physrev.00037.2006
  20. Lazaro-Munoz G, 2010, BIOL PSYCHIAT, V67, P1120, DOI 10.1016/j.biopsych.2009.12.002
  21. LeDoux J, 2012, NEURON, V73, P653, DOI 10.1016/j.neuron.2012.02.004
  22. Levis D. J., 1989, CONT LEARNING THEORI, P227
  23. McAllister DE, 1991, FEAR AVOIDANCE PHOBI
  24. Moscarello JM, 2013, J NEUROSCI, V33, P3815, DOI 10.1523/JNEUROSCI.2596-12.2013
  25. Mowrer OH, 1946, J COMP PSYCHOL, V39, P29, DOI 10.1037/h0060150
  26. NIKOLAEV E, 1992, BEHAV BRAIN RES, V48, P91, DOI 10.1016/S0166-4328(05)80143-3
  27. Paxinos G, 2005, RAT BRAIN STEREOTAXI
  28. Pitkanen A, 1997, TRENDS NEUROSCI, V20, P517, DOI 10.1016/S0166-2236(97)01125-9
  29. Poremba A, 1999, J NEUROSCI, V19, P9635
  30. Radwanska K, 2002, NEUROREPORT, V13, P2241, DOI 10.1097/01.wnr.0000045006.52875.93
  31. Repa JC, 2001, NAT NEUROSCI, V4, P724, DOI 10.1038/89512
  32. RESCORLA RA, 1967, PSYCHOL REV, V74, P151, DOI 10.1037/h0024475
  33. Saha S, 2005, EUR J NEUROSCI, V21, P3403, DOI 10.1111/j.1460-9568.2005.04166.x
  34. Savonenko A, 1999, NEUROSCIENCE, V94, P723, DOI 10.1016/S0306-4522(99)00331-0
  35. Scicli AP, 2004, BEHAV NEUROSCI, V118, P5, DOI 10.1037/0735-7044.118.1.5
  36. SOLOMON RL, 1954, PSYCHOL REV, V61, P353, DOI 10.1037/h0054540
  37. Sotres-Bayon F, 2008, J NEUROSCI, V28, P12147, DOI 10.1523/JNEUROSCI.4373-08.2008
  38. Yehuda R, 2006, ANN NY ACAD SCI, V1071, P379, DOI 10.1196/annals.1364.028
  39. Yehuda R, 2007, NEURON, V56, P19, DOI 10.1016/j.neuron.2007.09.006