Air pollution influence on serum inflammatory interleukins: A prospective study in childhood-onset systemic lupus erythematous patients

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
LUPUS, v.30, n.14, p.2268-2275, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective To assess the effect of individual exposure, in real-time, to traffic-related pollutants on serum interleukin levels of childhood-onset lupus erythematous systemic (c-SLE) patients. Methods A longitudinal and observational design was conducted in 12 repeated measures of serum samples and clinical evaluations (totaling 108 measurements) of c-SLE patients over 30 consecutive months. Real-time, individual exposure to fine particles (PM2.5) and nitrogen dioxide (NO2) was measured with portable monitors. Generalized estimating equation was used to evaluate the association between exposure to PM2.5 and NO2 and the following serum cytokine levels on the 7 days preceding clinical assessment and serum collection: MCP1, IL-6, IL-8, IL-10, IL-17, IFN-alpha, and TNF-alpha. Disease activity and other risk factors were also controlled. Results An interquartile range (IQR) increase in PM2.5 daily concentration was significantly associated with increased levels of TNF-alpha on the third, fourth, and seventh day after exposure; IL-10 on the third and fourth day after exposure; IL-17 on the third and seventh day after exposure; and INF-alpha on the third day after exposure (p < 0.05). An IQR increase in 7-day moving average of PM2.5 was associated with a 6.2 pg/mL (95% CI: 0.5; 11.8; p = 0.04) increase in serum IFN-alpha level. An unexpected significant association was observed between an IQR increase in NO(2)7-day cumulative concentration and a decrease of 1.6 pg/mL (95% CI: -2.6; -0.7; p < 0.001) in serum IL-17. Conclusion Real-time exposure to PM2.5 prospectively associated with increased serum TNF-alpha, INF-alpha, IL-10, and IL-17 levels in c-SLE patients.
Palavras-chave
Childhood-systemic lupus erythematosus, air pollution, real-time exposure, serum cytokines, inhalable fine particles, traffic-related-pollution
Referências
  1. Bernatsky S, 2016, ENVIRON RES, V146, P85, DOI 10.1016/j.envres.2015.12.021
  2. Bernatsky S, 2015, ENVIRON RES, V140, P474, DOI 10.1016/j.envres.2015.05.007
  3. Calderon-Garciduenas L, 2013, ARH HIG RADA TOKSIKO, V64, P23, DOI 10.2478/10004-1254-64-2013-2219
  4. Calderon-Garciduenas L, 2009, TOXICOL PATHOL, V37, P161, DOI 10.1177/0192623308329340
  5. Castaneda AR, 2018, TOXICOL LETT, V292, P85, DOI 10.1016/j.toxlet.2018.04.020
  6. Chu X, 2016, ENVIRON TOXICOL PHAR, V48, P76, DOI 10.1016/j.etap.2016.10.006
  7. Conde PG, 2018, MOD RHEUMATOL, V28, P156, DOI 10.1080/14397595.2017.1332508
  8. Crow MK, 2014, J IMMUNOL, V192, P5459, DOI 10.4049/jimmunol.1002795
  9. Dobreva ZG, 2015, TOXICOL IND HEALTH, V31, P1210, DOI 10.1177/0748233713491812
  10. Durga M, 2014, ENVIRON TOXICOL PHAR, V38, P518, DOI 10.1016/j.etap.2014.08.003
  11. Fernandes EC, 2015, ARTHRIT CARE RES, V67, P1609, DOI 10.1002/acr.22603
  12. Alves AGF, 2018, CLIN RHEUMATOL, V37, P683, DOI 10.1007/s10067-017-3893-1
  13. Fiorito G, 2018, ENVIRON MOL MUTAGEN, V59, P234, DOI 10.1002/em.22153
  14. Goulart MFG, 2020, PEDIATR NEPHROL, V35, P1247, DOI 10.1007/s00467-020-04517-3
  15. Gladman DD, 2002, J RHEUMATOL, V29, P288
  16. Gomes RC, 2016, ARTHRIT CARE RES, V68, P1736, DOI 10.1002/acr.22881
  17. Gorr MW, 2015, AM J PHYSIOL-HEART C, V309, pH53, DOI 10.1152/ajpheart.00162.2015
  18. Gruzieva O, 2017, ENVIRON HEALTH PERSP, V125, DOI 10.1289/EHP460
  19. Gu XY, 2017, ENVIRON POLLUT, V226, P163, DOI 10.1016/j.envpol.2017.03.070
  20. Hahn, 2019, BH DUBOIS LUPUS ERYT, P137
  21. Jaligama S, 2018, PART FIBRE TOXICOL, V15, DOI 10.1186/s12989-018-0255-3
  22. Jung CR, 2019, SCI TOTAL ENVIRON, V668, P342, DOI 10.1016/j.scitotenv.2019.03.018
  23. Klumper C, 2015, ENVIRON RES, V138, P381, DOI 10.1016/j.envres.2015.02.034
  24. LLORENTE L, 1995, J EXP MED, V181, P839, DOI 10.1084/jem.181.3.839
  25. Ma QY, 2017, INT IMMUNOPHARMACOL, V50, P139, DOI 10.1016/j.intimp.2017.06.019
  26. Matthews NC, 2016, AM J RESP CELL MOL, V54, P250, DOI 10.1165/rcmb.2015-0084OC
  27. Mousavi SE, 2017, MED HYPOTHESES, V100, P23, DOI 10.1016/j.mehy.2017.01.003
  28. Orione MAM, 2014, ARTHRIT CARE RES, V66, P1571, DOI 10.1002/acr.22358
  29. Franca CMP, 2018, J RHEUMATOL, V45, P248, DOI 10.3899/jrheum.161500
  30. Park YB, 1998, CLIN EXP RHEUMATOL, V16, P283
  31. Pope CA, 2016, CIRC RES, V119, P1204, DOI 10.1161/CIRCRESAHA.116.309279
  32. Reis H, 2018, ENVIRON INT, V114, P252, DOI 10.1016/j.envint.2018.02.042
  33. Ronnelid J, 2003, ANN RHEUM DIS, V62, P37, DOI 10.1136/ard.62.1.37
  34. Rose T, 2017, BEST PRACT RES CL RH, V31, P321, DOI 10.1016/j.berh.2017.09.007
  35. Sharif MN, 2004, J IMMUNOL, V172, P6476, DOI 10.4049/jimmunol.172.10.6476
  36. Sun G, 2016, INT J RHEUMATOL, V2016, DOI 10.1155/2016/5356307
  37. Vidotto JP, 2012, LUPUS, V21, P526, DOI 10.1177/0961203312437806
  38. Villarreal-Calderon R, 2012, J TOXICOL PATHOL, V25, P163, DOI 10.1293/tox.25.163
  39. Villarreal-Calderon R, 2012, EXP TOXICOL PATHOL, V64, P297, DOI 10.1016/j.etp.2010.09.002
  40. Zeft AS, 2016, CLIN EXP RHEUMATOL, V34, P946
  41. Zhao CN, 2019, AUTOIMMUN REV, V18, P607, DOI 10.1016/j.autrev.2018.12.010