Acute Inhibition of Excessive Mitochondrial Fission After Myocardial Infarction Prevents Long-term Cardiac Dysfunction

Carregando...
Imagem de Miniatura
Citações na Scopus
249
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
DISATNIK, Marie-Helene
FERREIRA, Julio C. B.
CAMPOS, Juliane Cruz
GOMES, Katia Sampaio
QI, Xin
MOCHLY-ROSEN, Daria
Citação
JOURNAL OF THE AMERICAN HEART ASSOCIATION, v.2, n.5, article ID e000461, 14p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background-Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. Methods and Results-We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 mu mol/L) decreased infarct size by 28 +/- 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. Conclusions-Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.
Palavras-chave
cardiac myocytes, Drp1, heart, mitochondria, protein-protein interaction inhibitor
Referências
  1. Brady NR, 2006, BBA-BIOENERGETICS, V1757, P667, DOI 10.1016/j.bbabio.2006.04.011
  2. Budas GR, 2010, CARDIOVASC RES, V88, P83, DOI 10.1093/cvr/cvq154
  3. Campos JC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052764
  4. Cassidy-Stone A, 2008, DEV CELL, V14, P193, DOI [10.1016/j.devcel.2007.11.019, 10.1016/j.devce1.2007.11.019]
  5. Chen HC, 2004, CURR TOP DEV BIOL, V59, P119, DOI 10.1016/S0070-2153(04)59005-1
  6. Chen L, 2001, CHEM BIOL, V8, P1123, DOI 10.1016/S1074-5521(01)00076-X
  7. Chen Y, 2011, CIRC RES, V109, P1327, DOI 10.1161/CIRCRESAHA.111.258723
  8. Churchill EN, 2009, J MOL CELL CARDIOL, V46, P278, DOI 10.1016/j.yjmcc.2008.09.713
  9. Detmer SA, 2007, NAT REV MOL CELL BIO, V8, P870, DOI 10.1038/nrm2275
  10. Dorn GW, 2013, CIRC J, V77, P1370, DOI 10.1253/circj.CJ-13-0453
  11. Elmore SP, 2001, FASEB J, V15, P2286
  12. El-Mowafy AM, 1999, FEBS LETT, V451, P63, DOI 10.1016/S0014-5793(99)00541-4
  13. Fannjiang Y, 2004, GENE DEV, V18, P2785, DOI 10.1101/gad.1247904
  14. Figueira TR, 2013, ANTIOXID REDOX SIGN, V18, P2029, DOI 10.1089/ars.2012.4729
  15. Frank S, 2001, DEV CELL, V1, P515, DOI 10.1016/S1534-5807(01)00055-7
  16. Hajek P, 2007, J BIOL CHEM, V282, P5670, DOI 10.1074/jbc.M608168200
  17. Halestrap AP, 2009, J BIOENERG BIOMEMBR, V41, P113, DOI 10.1007/s10863-009-9206-x
  18. Hausenloy DJ, 2003, J MOL CELL CARDIOL, V35, P339, DOI 10.1016/S0022-2828(03)00043-9
  19. Hom J, 2009, J MOL CELL CARDIOL, V46, P811, DOI 10.1016/j.yjmcc.2009.02.023
  20. HONDEGHEM LM, 1978, AM J PHYSIOL, V235, pH574
  21. Inagaki K, 2003, CIRCULATION, V108, P2304, DOI 10.1161/01.CIR.0000101682.24138.36
  22. Kabeya Y, 2000, EMBO J, V19, P5720, DOI 10.1093/emboj/19.21.5720
  23. Kim I, 2007, ARCH BIOCHEM BIOPHYS, V462, P245, DOI 10.1016/j.abb.2007.03.034
  24. Kwon SH, 2003, J MOL CELL CARDIOL, V35, P615, DOI 10.1016/S0022-2828(03)00084-1
  25. Lesnefsky EJ, 2001, J MOL CELL CARDIOL, V33, P1065, DOI 10.1006/jmcc.2001.1378
  26. Ong SB, 2010, CIRCULATION, V121, P2012, DOI 10.1161/CIRCULATIONAHA.109.906610
  27. Ong SB, 2010, CARDIOVASC RES, V88, P16, DOI 10.1093/cvr/cvq237
  28. Ong SB, 2013, ANTIOXID REDOX SIGN, V19, P400, DOI 10.1089/ars.2012.4777
  29. Otera H, 2010, J CELL BIOL, V191, P1141, DOI 10.1083/jcb.201007152
  30. Palmer CS, 2011, EMBO REP, V12, P565, DOI 10.1038/embor.2011.54
  31. Priault M, 2005, CELL DEATH DIFFER, V12, P1613, DOI 10.1038/sj.cdd.4401697
  32. Qi X, 2013, J CELL SCI, V126, P789, DOI 10.1242/jcs.114439
  33. Rosca MG, 2010, CARDIOVASC RES, V88, P40, DOI 10.1093/cvr/cvq240
  34. So EC, 2012, EUR J PHARMACOL, V683, P1, DOI 10.1016/j.ejphar.2012.02.012
  35. Song W, 2008, METHODS, V46, P295, DOI 10.1016/j.ymeth.2008.10.003
  36. Stanley WC, 2000, CARDIOVASC RES, V45, P805, DOI 10.1016/S0008-6363(99)00419-8
  37. Suzuki M, 2005, J BIOL CHEM, V280, P21444, DOI 10.1074/jbc.M414092200
  38. Tahara EB, 2009, FREE RADICAL BIO MED, V46, P1283, DOI 10.1016/j.freeradbiomed.2009.02.008
  39. TANDLER B, 1972, ANAT REC, V173, P309, DOI 10.1002/ar.1091730306
  40. Twig G, 2008, EMBO J, V27, P433, DOI 10.1038/sj.emboj.7601963
  41. Twig G, 2008, BBA-BIOENERGETICS, V1777, P1092, DOI 10.1016/j.bbabio.2008.05.001
  42. Wikstrom JD, 2009, INT J BIOCHEM CELL B, V41, P1914, DOI 10.1016/j.biocel.2009.06.006
  43. Yoon Y, 2003, MOL CELL BIOL, V23, P5409, DOI 10.1128/MCB.23.15.5409-5420.2003
  44. Zhang N, 2013, NEUROSCI LETT, V535, P104, DOI 10.1016/j.neulet.2012.12.049
  45. Zhao J, 2011, EMBO J, V30, P2762, DOI 10.1038/emboj.2011.198