Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/46115
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorNUCCI, Mariana P.-
dc.contributor.authorOLIVEIRA, Fernando A.-
dc.contributor.authorFERREIRA, Joao M.-
dc.contributor.authorPINTO, Yolanda O.-
dc.contributor.authorALVES, Arielly H.-
dc.contributor.authorMAMANI, Javier B.-
dc.contributor.authorNUCCI, Leopoldo P.-
dc.contributor.authorVALLE, Nicole M. E.-
dc.contributor.authorGAMARRA, Lionel F.-
dc.date.accessioned2022-04-19T13:05:09Z-
dc.date.available2022-04-19T13:05:09Z-
dc.date.issued2022-
dc.identifier.citationCELLS, v.11, n.3, article ID 485, 20p, 2022-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/46115-
dc.description.abstractThe goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and bioluminescent image (BLI) after lentiviral transduction and MNP labeling. At random, the animals were divided into 5 groups (control-G1, and experimental G2-G5). The photothrombotic stroke induction was confirmed by local blood perfusion reduction and Triphenyltetrazolium chloride (TTC), and MSC in the G3 and G5 groups were implanted after 24 h, with BLI and near-infrared fluorescence image (NIRF) tracking these cells at 28 h, 2, 7, 14, and 28 days. During a 28-day period, the G5 also conducted physical training, whereas the G4 simply did the training. At 0, 7, 14, and 28 days, the animals were functionally tested using a cylinder test and a spontaneous motor activity test. MNP internalization in MSC was confirmed using brightfield and fluorescence microscopy. In relation to G1 group, only 3% of cell viability reduced. The G2-G5 groups showed more than 69% of blood perfusion reduction. The G5 group performed better over time, with a progressive recovery of symmetry and an increase of fast vertical movements. Up to 7 days, BLI and NIRF followed MSC at the damaged site, demonstrating a signal rise that could be connected to cell proliferation at the injury site during the acute phase of stroke. Local MSC therapy mixed with physical activity resulted in better results in alleviating motor dysfunction, particularly during the acute period. When it comes to neurorehabilitation, this alternative therapy could be a suitable fit.eng
dc.description.sponsorshipCNPqConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) [465259/2014-6, 400856/2016-6]-
dc.description.sponsorshipFAPESPFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2019/21070-3, 2017/17868-4, 2016/21470-3]-
dc.description.sponsorshipSisNANO 2.0/MCTIC [442539/2019-3]-
dc.description.sponsorshipNational Institute of Science and Technology Complex Fluids (INCT-FCx)-
dc.language.isoeng-
dc.publisherMDPIeng
dc.relation.ispartofCells-
dc.rightsopenAccesseng
dc.subjectcell therapyeng
dc.subjectphysical exerciseeng
dc.subjectmultimodal nanoparticleseng
dc.subjectstrokeeng
dc.subjectbehavioral testeng
dc.subjecthuman bone marrow mesenchymal stem cellseng
dc.subjectnear-infrared fluorescence imageeng
dc.subjectbioluminescenceeng
dc.subject.othermesenchymal stem-cellseng
dc.subject.otheriron-oxide nanoparticleseng
dc.subject.otherlong-term trackingeng
dc.subject.otherneurogenesiseng
dc.subject.otherreperfusioneng
dc.subject.otherfluorescenteng
dc.subject.othermechanismseng
dc.subject.othersurvivaleng
dc.subject.otherefficacyeng
dc.titleEffect of Cell Therapy and Exercise Training in a Stroke Model, Considering the Cell Track by Molecular Image and Behavioral Analysiseng
dc.typearticleeng
dc.rights.holderCopyright MDPIeng
dc.identifier.doi10.3390/cells11030485-
dc.identifier.pmid35159294-
dc.subject.wosCell Biologyeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalOLIVEIRA, Fernando A.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalFERREIRA, Joao M.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalPINTO, Yolanda O.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalALVES, Arielly H.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalMAMANI, Javier B.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalNUCCI, Leopoldo P.:Ctr Univ Planalto Cent, BR-72445020 Brasilia, DF, Brazil-
hcfmusp.author.externalVALLE, Nicole M. E.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.author.externalGAMARRA, Lionel F.:Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil-
hcfmusp.description.articlenumber485-
hcfmusp.description.issue3-
hcfmusp.description.volume11-
hcfmusp.origemWOS-
hcfmusp.origem.idWOS:000754862300001-
hcfmusp.origem.id2-s2.0-85123522627-
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceBenedek A, 2006, BRAIN RES, V1116, P159, DOI 10.1016/j.brainres.2006.07.123eng
hcfmusp.relation.referenceBhasin A, 2011, CEREBROVASC DIS EXTR, V1, P93, DOI 10.1159/000333381eng
hcfmusp.relation.referenceBlank IA, 2017, J NEUROSCI, V37, P9999, DOI 10.1523/JNEUROSCI.3642-16.2017eng
hcfmusp.relation.referenceBoltze J, 2019, STROKE, V50, P3299, DOI 10.1161/STROKEAHA.119.025436eng
hcfmusp.relation.referenceCao J, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/3970942eng
hcfmusp.relation.referenceChen GC, 2018, SMALL, V14, DOI 10.1002/smll.201702679eng
hcfmusp.relation.referenceChen PJ, 2015, ADV MATER, V27, P6488, DOI 10.1002/adma.201502784eng
hcfmusp.relation.referenceCorbett D, 2017, INT J STROKE, V12, P462, DOI 10.1177/1747493017711814eng
hcfmusp.relation.referenceCrigler L, 2006, EXP NEUROL, V198, P54, DOI 10.1016/j.expneurol.2005.10.029eng
hcfmusp.relation.referenceda Silva H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200135eng
hcfmusp.relation.referenceda Silva HR, 2019, WORLD J STEM CELLS, V11, P100, DOI 10.4252/wjsc.v11.i2.100eng
hcfmusp.relation.referenceDi Raimondo D, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21239086eng
hcfmusp.relation.referenceDISHMAN RK, 1988, PHYSIOL BEHAV, V43, P541, DOI 10.1016/0031-9384(88)90206-5eng
hcfmusp.relation.referenceEmmons R, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/7131359eng
hcfmusp.relation.referenceEnglish K, 2013, IMMUNOL CELL BIOL, V91, P19, DOI 10.1038/icb.2012.56eng
hcfmusp.relation.referenceEvans MA, 2018, STROKE, V49, P700, DOI 10.1161/STROKEAHA.117.019136eng
hcfmusp.relation.referenceSouza TKF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201453eng
hcfmusp.relation.referenceRios-Kristjansson JG, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0219167eng
hcfmusp.relation.referenceJasmin, 2017, INT J NANOMED, V12, P779, DOI 10.2147/IJN.S126530eng
hcfmusp.relation.referenceJolkkonen J, 2007, NEUROSCI LETT, V428, P99, DOI 10.1016/j.neulet.2007.09.043eng
hcfmusp.relation.referenceJovin TG, 2015, NEW ENGL J MED, V372, P2296, DOI 10.1056/NEJMoa1503780eng
hcfmusp.relation.referenceK Strohschein, 2015, Open Orthop J, V9, P262, DOI 10.2174/1874325001509010262eng
hcfmusp.relation.referenceKarimi MA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089357eng
hcfmusp.relation.referenceKiyose R, 2021, WORLD NEUROSURG, V149, pE160, DOI 10.1016/j.wneu.2021.02.056eng
hcfmusp.relation.referenceLabat-gest V, 2013, JOVE-J VIS EXP, DOI 10.3791/50370eng
hcfmusp.relation.referenceLe Blanc K, 2012, NAT REV IMMUNOL, V12, P383, DOI 10.1038/nri3209eng
hcfmusp.relation.referenceLi JM, 2016, BIOMATERIALS, V110, P1, DOI 10.1016/j.biomaterials.2016.09.011eng
hcfmusp.relation.referenceLi PY, 2013, ANN NEUROL, V74, P458, DOI 10.1002/ana.23815eng
hcfmusp.relation.referenceLi WF, 2021, FRONT CELL NEUROSCI, V15, DOI 10.3389/fncel.2021.628940eng
hcfmusp.relation.referenceLim S, 2019, ACS NANO, V13, P10991, DOI 10.1021/acsnano.9b02173eng
hcfmusp.relation.referenceLindemann A, 2014, INT J NANOMED, V9, P5025, DOI 10.2147/IJN.S63873eng
hcfmusp.relation.referenceMaltman DJ, 2011, NEUROCHEM INT, V59, P347, DOI 10.1016/j.neuint.2011.06.008eng
hcfmusp.relation.referenceMartino G, 2006, NAT REV NEUROSCI, V7, P395, DOI 10.1038/nrn1908eng
hcfmusp.relation.referenceMarycz K, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/5756901eng
hcfmusp.relation.referenceMendez AA, 2018, CRIT CARE RES PRACT, V2018, DOI 10.1155/2018/9168731eng
hcfmusp.relation.referencede Oliveira GMM, 2020, ARQ BRAS CARDIOL, V115, P308, DOI 10.36660/abc.20200812eng
hcfmusp.relation.referenceMorishita S, 2020, BRAIN BEHAV, V10, DOI 10.1002/brb3.1535eng
hcfmusp.relation.referenceMorovatdar N, 2022, NEUROL SCI, V43, P255, DOI 10.1007/s10072-021-05259-2eng
hcfmusp.relation.referenceNauta AJ, 2007, BLOOD, V110, P3499, DOI 10.1182/blood-2007-02-069716eng
hcfmusp.relation.referenceNucci LP, 2015, STEM CELL RES THER, V6, DOI 10.1186/s13287-015-0015-3eng
hcfmusp.relation.referenceNucci MP, 2020, WORLD J STEM CELLS, V12, P381, DOI 10.4252/wjsc.v12.i5.381eng
hcfmusp.relation.referenceNudo RJ, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00887eng
hcfmusp.relation.referenceOliveira FA, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9070752eng
hcfmusp.relation.referencePaxinos G, 1998, RAT BRAIN IN STEREOTAXIC COORDINATES, FOURTH ED., pixeng
hcfmusp.relation.referencePin-Barre C, 2017, STROKE, V48, P2855, DOI 10.1161/STROKEAHA.117.017962eng
hcfmusp.relation.referenceRavoori MK, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42230-weng
hcfmusp.relation.referenceSamakova A, 2019, PHYSIOL RES, V68, pS131, DOI 10.33549/physiolres.934345eng
hcfmusp.relation.referenceSchaar Krystal L, 2010, Exp Transl Stroke Med, V2, P13, DOI 10.1186/2040-7378-2-13eng
hcfmusp.relation.referenceSchallert Timothy, 2006, NeuroRx, V3, P497, DOI 10.1016/j.nurx.2006.08.001eng
hcfmusp.relation.referenceSchmidt A, 2014, STROKE, V45, P239, DOI 10.1161/STROKEAHA.113.002048eng
hcfmusp.relation.referenceSibov TT, 2014, INT J NANOMED, V9, P337, DOI 10.2147/IJN.S53299eng
hcfmusp.relation.referenceTerashi T, 2019, NEUROL RES, V41, P510, DOI 10.1080/01616412.2019.1580458eng
hcfmusp.relation.referenceVerma VK, 2015, INT J NANOMED, V10, P711, DOI 10.2147/IJN.S75445eng
hcfmusp.relation.referenceXiong XY, 2016, PROG NEUROBIOL, V142, P23, DOI 10.1016/j.pneurobio.2016.05.001eng
hcfmusp.relation.referenceYang YY, 2017, J NEUROSCI, V37, P4692, DOI 10.1523/JNEUROSCI.3233-16.2017eng
hcfmusp.relation.referenceZhang F, 2017, CELL TRANSPLANT, V26, P1648, DOI 10.1177/0963689717722560eng
hcfmusp.relation.referenceZhang YX, 2015, BMC NEUROSCI, V16, DOI 10.1186/s12868-015-0196-9eng
hcfmusp.relation.referenceZhou YY, 2019, J CLIN MED, V8, DOI 10.3390/jcm8071025eng
dc.description.indexMEDLINEeng
dc.identifier.eissn2073-4409-
hcfmusp.citation.scopus6-
hcfmusp.scopus.lastupdate2024-04-12-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/Outros
Outros departamentos - FM/Outros

Artigos e Materiais de Revistas Científicas - LIM/44
LIM/44 - Laboratório de Ressonância Magnética em Neurorradiologia

Artigos e Materiais de Revistas Científicas - ODS/03
ODS/03 - Saúde e bem-estar


Files in This Item:
File Description SizeFormat 
art_NUCCI_Effect_of_Cell_Therapy_and_Exercise_Training_in_2022.PDFpublishedVersion (English)2.49 MBAdobe PDFThumbnail
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.