Balanced spatial distribution of green areas creates healthier urban landscapes

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
CIRINO, Douglas William
TAMBOSI, Leandro Reverberi
FREITAS, Simone Rodrigues de
METZGER, Jean Paul
Citação
JOURNAL OF APPLIED ECOLOGY, v.59, n.7, p.1884-1896, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The benefits of green infrastructure on human well-being in urban areas are already well-established, with strong evidence of the positive effects of the amount and proximity to green areas. However, the understanding of how the spatial distribution and type of green areas affect health is still an open question. Here, through a land sharing and sparing framework, we explore how different spatial configurations of green and built-up areas and how different types of green areas can affect cardiovascular and respiratory hospitalizations in Sao Paulo city, Brazil. Sharing/sparing indicators were selected as the main explanatory factors in the control of all groups of diseases. Land sharing appeared as a favourable spatial condition to prevent cardiovascular hospitalization, while land sparing and arboreal vegetation were relevant to reduce hospitalization by lower respiratory diseases. For upper respiratory diseases, forests seem to provide a disservice, once they were associated with increased rates of hospitalization by respiratory allergies causes. Considering that hospitalization rates and severity of cardiovascular diseases are substantially higher than those of upper respiratory ones, dense vegetation tends to provide more services than disservices. The land sharing configuration, which is characterized by green areas spread throughout the urban network (in streets, gardens, small squares or parks), should lead to higher exposure and use of the benefits of green areas, which may then explain the greater prevention of cardiovascular diseases. These novel results indicate that a more balanced distribution of green areas across built-up areas creates healthier urban spaces, and thus can be used as an urban planning strategy to leverage the health benefits provided by green infrastructure. Policy implications. Aiming to reduce hospitalizations by cardiovascular and pulmonary causes, urban planning should promote the spreading of green areas across the cities, in order to increase daily contact with natural attributes, giving preference to distribution over total quantity of green in urban landscape.
Palavras-chave
ecosystem services, green distribution, human health, land sharing, land sparing, landscape structure, urban landscape
Referências
  1. Alcock I, 2017, ENVIRON INT, V109, P29, DOI 10.1016/j.envint.2017.08.009
  2. Almeida CMVB, 2018, ECOSYST SERV, V30, P236, DOI 10.1016/j.ecoser.2017.07.003
  3. Alvey Alexis A., 2006, Urban Forestry & Urban Greening, V5, P195, DOI 10.1016/j.ufug.2006.09.003
  4. Arantes BL, 2021, CITIES, V111, DOI 10.1016/j.cities.2020.103099
  5. Astell-Burt T, 2020, INT J EPIDEMIOL, V49, P926, DOI 10.1093/ije/dyz239
  6. Balmford A, 2012, P ROY SOC B-BIOL SCI, V279, P2714, DOI 10.1098/rspb.2012.0515
  7. Barrozo LV, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232074
  8. Bratman GN, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aax0903
  9. Burnham KP., 2002, PRACTICAL INFORM THE, P2
  10. Bush J, 2019, CITIES, V95, DOI 10.1016/j.cities.2019.102483
  11. Caraballo L, 2016, WORLD ALLERGY ORGAN, V9, DOI 10.1186/s40413-016-0110-7
  12. Caryl FM, 2016, J APPL ECOL, V53, P191, DOI 10.1111/1365-2664.12549
  13. CEINFO, 2010, COORD EP INF EST POP
  14. CEM, 2021, CTR EST METR DOWNL D
  15. CEM, 2017, DIC BAS DAD GEOC AUT
  16. Cirino D.W., 2022, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.7sqv9s4v6, DOI 10.5061/DRYAD.7SQV9S4V6]
  17. Cohen-Shacham E, 2019, ENVIRON SCI POLICY, V98, P20, DOI 10.1016/j.envsci.2019.04.014
  18. Coutts C, 2015, INT J ENV RES PUB HE, V12, P9768, DOI 10.3390/ijerph120809768
  19. Dennis M, 2016, ECOSYST SERV, V17, P208, DOI 10.1016/j.ecoser.2016.01.003
  20. Ibanez-Alamo JD, 2020, SCI TOTAL ENVIRON, V707, DOI 10.1016/j.scitotenv.2019.135477
  21. Dobbs C, 2018, ECOL INDIC, V85, P1068, DOI 10.1016/j.ecolind.2017.11.062
  22. Dudek T, 2018, EUR J FOREST RES, V137, P849, DOI 10.1007/s10342-018-1144-x
  23. Ferrante G, 2020, WORLD ALLERGY ORGAN, V13, DOI 10.1016/j.waojou.2019.100096
  24. Geschke A, 2018, J APPL ECOL, V55, P2320, DOI 10.1111/1365-2664.13183
  25. Hegetschweiler KT, 2017, URBAN FOR URBAN GREE, V21, P48, DOI 10.1016/j.ufug.2016.11.002
  26. IBGE-Instituto Brasileiro de Geografia e Estat?stica, 2010, CENS BRAS 2010
  27. IBGE-Instituto Brasileiro de Geografia e Estat?stica, 2021, CID EST
  28. James Peter, 2015, Curr Epidemiol Rep, V2, P131
  29. Janhall S, 2015, ATMOS ENVIRON, V105, P130, DOI 10.1016/j.atmosenv.2015.01.052
  30. Jennings V, 2015, INT J ENV RES PUB HE, V12, P1952, DOI 10.3390/ijerph120201952
  31. Johnston FH, 2009, ECOHEALTH, V6, P99, DOI 10.1007/s10393-009-0225-1
  32. Kabisch N, 2017, ENVIRON RES, V159, P362, DOI 10.1016/j.envres.2017.08.004
  33. Kaczynski AT, 2014, INT J BEHAV NUTR PHY, V11, DOI 10.1186/s12966-014-0146-4
  34. Kondo MC, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15030445
  35. Kosanic A, 2020, ECOSYST SERV, V45, DOI 10.1016/j.ecoser.2020.101168
  36. Lin BB, 2013, J APPL ECOL, V50, P1161, DOI 10.1111/1365-2664.12118
  37. Lotufo PA, 2017, SAO PAULO MED J, V135, P1, DOI 10.1590/1516-3180.2017.1351291216
  38. Marselle MR, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-79924-5
  39. Methorst J, 2021, LANDSCAPE URBAN PLAN, V211, DOI 10.1016/j.landurbplan.2021.104084
  40. Metzger JP, 2021, SCI TOTAL ENVIRON, V796, DOI 10.1016/j.scitotenv.2021.149028
  41. Metzger JP, 2021, PEOPLE NAT, V3, P266, DOI 10.1002/pan3.10172
  42. Miller SM, 2019, ECOSYST SERV, V37, DOI 10.1016/j.ecoser.2019.100928
  43. Mitchell MGE, 2015, TRENDS ECOL EVOL, V30, P190, DOI 10.1016/j.tree.2015.01.011
  44. Moreira TCL, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17030725
  45. Nieuwenhuijsen MJ, 2017, EPIDEMIOLOGY, V28, P63, DOI 10.1097/EDE.0000000000000549
  46. Nowak David J., 2006, Urban Forestry & Urban Greening, V5, P93, DOI [10.1016/j.ufug.2006.04.002, 10.1016/j.ufug.2006.01.007]
  47. Nowak DJ, 2018, URBAN FOR URBAN GREE, V29, P40, DOI 10.1016/j.ufug.2017.10.019
  48. Parmes E, 2020, ENVIRON RES, V183, DOI 10.1016/j.envres.2019.108953
  49. Plans E, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16244918
  50. Rezende CL, 2018, PERSPECT ECOL CONSER, V16, P208, DOI 10.1016/j.pecon.2018.10.002
  51. Richardson DB, 2015, INT J EPIDEMIOL, V44, P1660, DOI 10.1093/ije/dyv137
  52. Roe JJ, 2013, INT J ENV RES PUB HE, V10, P4086, DOI 10.3390/ijerph10094086
  53. Roeland S, 2019, J FORESTRY RES, V30, P1981, DOI 10.1007/s11676-019-00916-x
  54. Samuelsson K, 2018, LANDSCAPE URBAN PLAN, V171, P7, DOI 10.1016/j.landurbplan.2017.11.009
  55. Sandifer PA, 2015, ECOSYST SERV, V12, P1, DOI 10.1016/j.ecoser.2014.12.007
  56. Sao Paulo-Prefeitura Municipal de Sao Paulo, 2020, GEOSAMPA
  57. Schebella MF, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030802
  58. Shanahan DF, 2016, SCI REP-UK, V6, DOI 10.1038/srep28551
  59. Shanahan DF, 2015, BIOSCIENCE, V65, P476, DOI 10.1093/biosci/biv032
  60. Shi QQ, 2020, ENVIRON SCI POLLUT R, V27, P12514, DOI 10.1007/s11356-020-07852-y
  61. Soga M, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14010071
  62. Soga M, 2016, FRONT ECOL ENVIRON, V14, P94, DOI 10.1002/fee.1225
  63. Soga M, 2015, LANDSCAPE URBAN PLAN, V143, P69, DOI 10.1016/j.landurbplan.2015.06.003
  64. Soga M, 2014, J APPL ECOL, V51, P1378, DOI 10.1111/1365-2664.12280
  65. Squillacioti G, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17010108
  66. Stott I, 2015, FRONT ECOL ENVIRON, V13, P387, DOI 10.1890/140286
  67. SUS Sistema Unico de Sa?de, 2021, PORT SAUD DATASUS
  68. SVMA Secretaria Municipal do Verde e do Meio Ambiente, 2020, MAP DIG COB VEG MUN
  69. Tamosiunas A, 2014, ENVIRON HEALTH-GLOB, V13, DOI 10.1186/1476-069X-13-20
  70. Tengberg A, 2012, ECOSYST SERV, V2, P14, DOI 10.1016/j.ecoser.2012.07.006
  71. Tischer C, 2017, EUR RESPIR J, V49, DOI 10.1183/13993003.02112-2015
  72. Vailshery LS, 2013, URBAN FOR URBAN GREE, V12, P408, DOI 10.1016/j.ufug.2013.03.002
  73. van den Bosch M, 2017, ENVIRON RES, V158, P373, DOI 10.1016/j.envres.2017.05.040
  74. Yeager RA, 2020, TRENDS CARDIOVAS MED, V30, P241, DOI 10.1016/j.tcm.2019.06.005