Systemic autoimmune myopathies: a prospective phase 4 controlled trial of an inactivated virus vaccine against SARS-CoV-2

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
RHEUMATOLOGY, v.61, n.8, p.3351-3361, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives. To evaluate immunogenicity and safety of an inactivated SARS-CoV-2 vaccine in systemic autoimmune myopathies (SAMs) and the possible influence of baseline disease parameters, comorbidities and therapy on immune response. Methods. This prospective controlled study included 53 patients with SAMs and 106 non-immunocompromised control group (CTRL). All participants received two doses of the Sinovac-CoronaVac vaccine (28-day interval). Immunogenicity was assessed by anti-SARS-CoV-2 S1/S2 IgG seroconversion (SC), anti-S1/S2 IgG geometric mean titre (GMT), factor increase GMT (FI-GMT), neutralizing antibodies (NAb) positivity, and median neutralizing activity after each vaccine dose (D0 and D28) and six weeks after the second dose (D69). Participants with pre-vaccination positive IgG serology and/or NAb and those with RT-PCR confirmed COVID-19 during the protocol were excluded from immunogenicity analysis. Results. Patients and CTRL had comparable sex (P>0.99) and age (P=0.90). Immunogenicity of 37 patients and 79 CTRL-naive participants revealed at D69, a moderate but significantly lower SC (64.9% vs 91.1%, P<0.001), GMT [7.9 (95%CI 4.7-13.2) vs 24.7 (95%CI 30.0-30.5) UA/ml, P<0.001] and frequency of NAb (51.4% vs 77.2%, P<0.001) in SAMs compared with CTRL. Median neutralizing activity was comparable in both groups [57.2% (interquartile range (IQR) 43.4-83.4) vs 63.0% (IQR 40.3-80.7), P=0.808]. Immunosuppressives were less frequently used among NAb+ patients vs NAb- patients (73.7% vs 100%, P=0.046). Type of SAMs, disease status, other drugs or comorbidities did not influence immunogenicity. Vaccine-related adverse events were mild with similar frequencies in patients and CTRL (P>0.05). Conclusion. Sinovac-CoronaVac is safe and has a moderate short-term immunogenicity in SAMs, but reduced compared with CTRL. We further identified that immunosuppression is associated with diminished NAb positivity.
Palavras-chave
anti-SARS-CoV-2 vaccine, COVID-19, immunogenicity, myositis, neutralizing antibodies, safety
Referências
  1. Arnold J, 2021, RHEUMATOLOGY, V60, P3496, DOI 10.1093/rheumatology/keab223
  2. Barek MA, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05684
  3. Pinto GLB, 2020, CLIN RHEUMATOL, V39, P2763, DOI 10.1007/s10067-020-05013-7
  4. Bower H, 2021, ANN RHEUM DIS, V80, P1086, DOI 10.1136/annrheumdis-2021-219845
  5. Boyarsky BJ, 2021, ANN RHEUM DIS, V80, P1098, DOI 10.1136/annrheumdis-2021-220289
  6. Braun-Moscovici Y, 2021, ANN RHEUM DIS, V80, P1317, DOI 10.1136/annrheumdis-2021-220503
  7. Cherian S, 2021, RHEUMATOL INT, V41, P1441, DOI 10.1007/s00296-021-04917-0
  8. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  9. Curtis JR, 2021, ARTHRITIS RHEUMATOL, V73, P1093, DOI 10.1002/art.41734
  10. Dalakas MC, 2015, NEW ENGL J MED, V372, P1734, DOI 10.1056/NEJMra1402225
  11. DESOUZA FHC, 2019, ADV RHEUMATOL, V59
  12. European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP), 2018, GUID RISK MAN SYST M
  13. Fathi A, 2021, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.601170
  14. Furer V, 2021, ANN RHEUM DIS, V80, P1330, DOI 10.1136/annrheumdis-2021-220647
  15. Geisen UM, 2021, ANN RHEUM DIS, V80, P1306, DOI 10.1136/annrheumdis-2021-220272
  16. Gupta L, 2021, RHEUMATOLOGY, V60, P907, DOI 10.1093/rheumatology/keaa610
  17. Harris-Love MO, 2009, RHEUMATOLOGY, V48, P134, DOI 10.1093/rheumatology/ken441
  18. Khoury DS, 2021, NAT MED, V27, P1205, DOI 10.1038/s41591-021-01377-8
  19. Lundberg IE, 2017, ANN RHEUM DIS, V76, P1955, DOI 10.1136/annrheumdis-2017-211468
  20. Marie I, 2011, SEMIN ARTHRITIS RHEU, V41, P48, DOI 10.1016/j.semarthrit.2010.08.003
  21. Medeiros-Ribeiro AC, 2021, NAT MED, V27, P1744, DOI 10.1038/s41591-021-01469-5
  22. Miller FW, 2001, RHEUMATOLOGY, V40, P1262, DOI 10.1093/rheumatology/40.11.1262
  23. Moutsopoulos HM, 2021, J AUTOIMMUN, V121, DOI 10.1016/j.jaut.2021.102649
  24. Pinal-Fernandez I, 2018, CURR RHEUMATOL REP, V20, DOI 10.1007/s11926-018-0732-6
  25. Rider Lisa G., 2003, Journal of Rheumatology, V30, P603
  26. Saad CGS, 2011, ANN RHEUM DIS, V70, P1068, DOI 10.1136/ard.2011.150250
  27. Scully EP, 2020, NAT REV IMMUNOL, V20, P442, DOI 10.1038/s41577-020-0348-8
  28. Shinjo SK, 2012, VACCINE, V31, P202, DOI 10.1016/j.vaccine.2012.10.063
  29. Simon D, 2021, ANN RHEUM DIS, V80, P1312, DOI 10.1136/annrheumdis-2021-220461
  30. Singh AK, 2020, DIABETES OBES METAB, V22, P1915, DOI 10.1111/dom.14124
  31. Spiera R, 2021, ANN RHEUM DIS, V80, P1357, DOI 10.1136/annrheumdis-2021-220604
  32. Strangfeld A, 2021, ANN RHEUM DIS, V80, P930, DOI 10.1136/annrheumdis-2020-219498
  33. Taylor SC, 2021, J CLIN MICROBIOL, V59, DOI 10.1128/JCM.02438-20
  34. Thakur B, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-88130-w
  35. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research, 2007, GUID IND CLIN DAT NE
  36. World Health Organization, WORLD ALLIANCE PATIE
  37. World Health Organization, WHO VAL SIN COVID 19