Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
PANIS, Carolina
CANDIOTTO, Luciano Zanetti Pessoa
GABOARDI, Shaiane Carla
GURZENDA, Susie
CASTRO, Marcia
LEMOS, Bernardo
Citação
ENVIRONMENT INTERNATIONAL, v.165, article ID 107321, 11p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Pesticides, which are associated with endocrine dysfunction, immunological dysregulation, and cancer, are widespread sources of drinking water contamination. The state of Parana has a population of 11 million, is the second largest grain producer in Brazil and is a leading consumer of pesticides. In this study, we analyzed the extent of drinking water contamination from 11 proven, probable, or potentially carcinogenic pesticides (alachlor, aldrin-dieldrin, atrazine, chlordane, DDT-DDD-DDE, diuron, glyphosate-AMPA, lindane-gamma-HCH, mancozeb-ETU, molinate, and trifluralin) in 127 grain-producing municipalities in the state of Parana. Extensive contamination of drinking water was found, including legacy pesticides such as aldrin-dieldrin (mean 0.047 ppb), DDT-DDD-DDE (mean: 0.07), chlordane (mean: 0.181), and lindane-HCH (mean: 2.17). Most of the municipalities were significantly above the maximum limits for each one of the currently allowed pesticides (67% for alachlor, 9.44% for atrazine, 96.85% for diuron, 100% for glyphosate-AMPA, 80.31% for mancozeb-ETU, 91.33% for molinate, and 12.6% for trifluralin). Ninety-seven percent of municipalities presented a sum of all pesticides at levels significantly above (189.84 ppb) the European Union preconized limits (<0.5 ppb). Using the mean pesticide concentration in water (ppb), the exposed population for each municipality, and the benchmark cancer risk for pesticides, we estimated the minimum number of cancer cases attributable to pesticide-contaminated drinking water during the period (total of 542 cases). More than 80% were attributed to mancozeb-ETU and diuron. Glyphosate-AMPA and diuron-attributable cases strongly correlated with the total cancer cases in the same period (R = 0.8117 and 0.8138, respectively) as well as with breast cancer cases (R = 0.7695 and 0.7551, respectively). Water contamination was significantly correlated with the sum of the estimated cancer cases for all 11 pesticides detected in each city (R = 0.58 and p < 0.0001). These findings reveal extensive contamination of drinking water in the state of Parana and suggest that contamination may increase the risk of cancer in this region.
Palavras-chave
Drinking water, Pesticides, Contamination, Cancer
Referências
  1. ABRAF, 2006, ASS BRAS PROD FLOR P
  2. Agarwal A, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4287-y
  3. AHS, 2021, AGR HLTH STUD
  4. Andreotti G, 2020, ENVIRON HEALTH PERSP, V128, DOI 10.1289/EHP6334
  5. Andreotti G, 2018, JNCI-J NATL CANCER I, V110, P509, DOI 10.1093/jnci/djx233
  6. [Anonymous], 2019, CARCINOGENIC HAZARDS
  7. Axelstad M, 2011, TOXICOL SCI, V120, P439, DOI 10.1093/toxsci/kfr006
  8. Aydin ME, 2013, SCI WORLD J, DOI 10.1155/2013/849716
  9. Aydinalp C., 2004, Journal of Central European Agriculture, V5, P5
  10. Berger R., 2007, OFERTA DEMANDA MADEI, DOI [10.13140/RG.2.2.13032.62720, DOI 10.13140/RG.2.2.13032.62720]
  11. Boada LD, 2012, ENVIRON HEALTH-GLOB, V11, DOI 10.1186/1476-069X-11-28
  12. Bombardi L., 2019, GEOGRAPHY AGROTOXINS, V1, DOI [10.11606/9788575063590, DOI 10.11606/9788575063590]
  13. Brovini EM, 2021, SCI TOTAL ENVIRON, V771, DOI 10.1016/j.scitotenv.2020.144754
  14. Buczynska Alina, 2005, International Journal of Occupational Medicine and Environmental Health, V18, P331
  15. Callahan M.A., 1979, WATER RELATED ENV FA
  16. Candiotto L.Z.P., 2017, FOOD TOXICOL, P391, DOI [10.1201/9781315161075, DOI 10.1201/9781315161075]
  17. CDC,, 2021, ORG PEST OV HEX
  18. Close ME, 2021, SCI TOTAL ENVIRON, V754, DOI 10.1016/j.scitotenv.2020.142005
  19. Commission Europeenne Parlement europeen et Conseil de l'Union Europeenne, 2000, J OFFICIEL COMMUNAUT, VL327, P1
  20. Connolly A, 2019, INT J HYG ENVIR HEAL, V222, P205, DOI 10.1016/j.ijheh.2018.09.004
  21. Cooper GS, 2004, ENVIRON HEALTH PERSP, V112, P1080, DOI 10.1289/ehp.6892
  22. Dolan T, 2013, ENVIRON SCI TECHNOL, V47, P4999, DOI 10.1021/es304955g
  23. EPA, 2003, ENV PROTECTION AGENC
  24. EPA, 2021, PERSISTENT ORGANIC P
  25. Farr SL, 2004, AM J EPIDEMIOL, V160, P1194, DOI 10.1093/aje/kwi006
  26. Fatoki OS, 2004, J ENVIRON SCI HEAL B, V39, P101, DOI 10.1081/PFC-120027442
  27. Fletcher CD, 2002, PATHOLOGY GENETICS T, V3rd
  28. Food and Agriculture Organization of the United Nations, 2018, FOOD BALANCE SHEETS
  29. Gaboardi S.C., 2019, REV NERA, V22, DOI [10.47946/rnera.v0i46.5566, DOI 10.47946/RNERA.V0I46.5566]
  30. Gautam S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05274
  31. Geng Y, 2021, SCI TOTAL ENVIRON, V769, DOI 10.1016/j.scitotenv.2020.144396
  32. Hofmann JN, 2021, ENVIRON HEALTH PERSP, V129, DOI 10.1289/EHP6960
  33. Hung DQ, 2002, CHEMOSPHERE, V47, P357, DOI 10.1016/S0045-6535(01)00342-3
  34. IARC, 2015, IARC MONOGRAPHS VOLU, V112
  35. IBAMA, 2006, INSTR NORM 13
  36. Ibarluzea JM, 2004, CANCER CAUSE CONTROL, V15, P591, DOI 10.1023/B:CACO.0000036167.51236.86
  37. INCA, 2021, INF REG HOSP CANC TA
  38. INCA. Instituto Nacional de Cancer, 2020, EST CAS NOV
  39. Inoue-Choi M, 2016, OCCUP ENVIRON MED, V73, P582, DOI 10.1136/oemed-2016-103575
  40. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaveis (IBAMA), 2019, REL COM AGR
  41. Kalajzic T, 1998, CHEMOSPHERE, V36, P1615, DOI 10.1016/S0045-6535(97)10035-2
  42. Kaushik A, 2010, ENVIRON MONIT ASSESS, V160, P61, DOI 10.1007/s10661-008-0657-z
  43. Kriebel D, 2001, ENVIRON HEALTH PERSP, V109, P871, DOI 10.2307/3454986
  44. Kuba J, 2015, J ENVIRON SCI HEAL B, V50, P1, DOI 10.1080/03601234.2015.964128
  45. Kucka M, 2012, TOXICOL APPL PHARM, V265, P19, DOI 10.1016/j.taap.2012.09.019
  46. Kumar M, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.553850
  47. Lerro CC, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106187
  48. Lesseur C, 2021, ENVIRON POLLUT, V280, DOI 10.1016/j.envpol.2021.117002
  49. Lopez-Fernandez O, 2017, ENVIRON RES, V154, P253, DOI 10.1016/j.envres.2017.01.016
  50. Mcelroy JA, 2007, J EXPO SCI ENV EPID, V17, P207, DOI 10.1038/sj.jes.7500511
  51. Mohammed AM, 2018, TOXICOL LETT, V295, P307, DOI 10.1016/j.toxlet.2018.07.012
  52. Odewale GO, 2021, ENVIRON SCI POLLUT R, V28, P33133, DOI 10.1007/s11356-021-12747-7
  53. Office of Environmental Health Hazard Assessment, 2009, TECHN SUPP DOC CANC
  54. Oller-Arlandis V, 2012, REV PANAM SALUD PUBL, V32, P435, DOI 10.1590/S1020-49892012001400007
  55. Pan HW, 2019, ENVIRON GEOCHEM HLTH, V41, P1833, DOI 10.1007/s10653-017-9970-1
  56. Panis C, REV CIENC FARM BASIC, V43, P748, DOI [10.4322/, 10.4322/2179-443X.0748]
  57. Panis C, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.787438
  58. Park AS, 2020, INT J HYG ENVIR HEAL, V226, DOI 10.1016/j.ijheh.2020.113486
  59. Parks CG, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01476
  60. Pawlak F, 2021, SCI TOTAL ENVIRON, V778, DOI 10.1016/j.scitotenv.2021.145244
  61. Pizzatti L, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.01698
  62. Rodriguez AGP, 2017, ENVIRON POLLUT, V220, P853, DOI 10.1016/j.envpol.2016.10.068
  63. Reynoso EC, 2020, INT J ENV RES PUB HE, V17, P7102, DOI 10.3390/ijerph17197102
  64. Rocha PRR, 2013, CIENC RURAL, V43, P1961, DOI 10.1590/S0103-84782013001100007
  65. Shearer JJ, 2021, ENVIRON RES, V199, DOI 10.1016/j.envres.2021.111276
  66. Shrestha S, 2020, ENVIRON RES, V191, DOI 10.1016/j.envres.2020.110186
  67. Shrestha S, 2018, ENVIRON HEALTH PERSP, V126, DOI 10.1289/EHP3194
  68. SIAGRO, 2018, DAD SIAGRO
  69. SISAGUA, 2021, SIST INF VIG QUAL AG
  70. Syafrudin M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18020468
  71. Tang T, 2015, SCI TOTAL ENVIRON, V517, P207, DOI 10.1016/j.scitotenv.2015.02.040
  72. U.S EPA, 2017, US ENV AG HUM HLTH B
  73. USEPA, 2014, RISK ASS CARC EFF
  74. Van Leeuwen JA, 1999, INT J EPIDEMIOL, V28, P836, DOI 10.1093/ije/28.5.836
  75. Van Stempvoort DR, 2016, PEST MANAG SCI, V72, P1862, DOI 10.1002/ps.4218
  76. van Wendel de Joode B, 2016, ENVIRON POLLUT, V215, P247, DOI 10.1016/j.envpol.2016.04.015
  77. WHO, 2003, NITR NITR DRINK WAT
  78. Woldetsadik D, 2021, ENVIRON GEOCHEM HLTH, V43, P3597, DOI 10.1007/s10653-021-00846-w
  79. WONG O, 1989, BRIT J IND MED, V46, P521
  80. Wu CF, 2014, SCI TOTAL ENVIRON, V470, P1047, DOI 10.1016/j.scitotenv.2013.10.056
  81. Yi XH, 2019, ENVIRON POLLUT, V251, P892, DOI 10.1016/j.envpol.2019.05.062
  82. Zhang C, 2021, ENVIRON INT, V156, DOI 10.1016/j.envint.2021.106650
  83. Zhang C, 2020, ENVIRON INT, V139, DOI 10.1016/j.envint.2020.105719
  84. Zhang YP, 2021, ENVIRON SCI POLLUT R, V28, P39423, DOI 10.1007/s11356-021-13140-0