Synonymous mutation rs1129293 is associated with PIK3CG expression and PI3K gamma activation in patients with chronic Chagas cardiomyopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER GMBH
Autores
SILVA, Maria Claudia
FUZO, Carlos Alessandro
PAIVA, Isadora Marques
BIBO, Naira Lopes
OLIVEIRA, Maykon Tavares de
SOARES, Hellen Anastacia da Silva
CHEVILLARD, Christophe
CUNHA, Thiago Mattar
Citação
IMMUNOBIOLOGY, v.227, n.5, article ID 152242, 7p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3K gamma activation.
Palavras-chave
Synonymous mutation, Chagas disease, PI3K?, Single nucleotide polymorphism, rs1129293
Referências
  1. 1000 Genomes Project Consortium, 2015, Nature, V526, P68, DOI 10.1038/nature15393
  2. Alasoo K, 2018, NAT GENET, V50, P424, DOI 10.1038/s41588-018-0046-7
  3. Brest P, 2011, NAT GENET, V43, P242, DOI 10.1038/ng.762
  4. Brognard J, 2009, J BIOL CHEM, V284, P15215, DOI 10.1074/jbc.M901468200
  5. Buccitelli C, 2020, NAT REV GENET, V21, P630, DOI 10.1038/s41576-020-0258-4
  6. BURGERING BMT, 1995, NATURE, V376, P599, DOI 10.1038/376599a0
  7. Cartegni L, 2002, NAT REV GENET, V3, P285, DOI 10.1038/nrg775
  8. Chamary JV, 2005, GENOME BIOL, V6, DOI 10.1186/gb-2005-6-9-r75
  9. Chen KG, 2020, PHARMACOGENOMICS, V21, P459, DOI 10.2217/pgs-2019-0151
  10. Chen R, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013574
  11. Duan JB, 2003, J MOL EVOL, V57, P694, DOI 10.1007/s00239-003-2519-1
  12. EYREWALKER A, 1993, NUCLEIC ACIDS RES, V21, P4599, DOI 10.1093/nar/21.19.4599
  13. Feng TN, 2020, J EXP CLIN CANC RES, V39, DOI 10.1186/s13046-020-01652-5
  14. Gu WJ, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000664
  15. Guo Z, 2020, MOL CARCINOGEN, V59, P923, DOI 10.1002/mc.23207
  16. Gutman T, 2021, NPJ GENOM MED, V6, DOI 10.1038/s41525-021-00229-1
  17. Hahne F, 2016, METHODS MOL BIOL, V1418, P335, DOI 10.1007/978-1-4939-3578-9_16
  18. HALDANE JBS, 1954, J GENET, V52, P631, DOI 10.1007/BF02985085
  19. Hsu ACY, 2015, AM J RESP CRIT CARE, V191, P1012, DOI 10.1164/rccm.201501-0188OC
  20. Karakostis K, 2019, J MOL CELL BIOL, V11, P187, DOI 10.1093/jmcb/mjy049
  21. Kerimov N, 2021, NAT GENET, V53, P1290, DOI 10.1038/s41588-021-00924-w
  22. Kerna Irina, 2013, J Mol Genet Med, V7, P321
  23. Kim A, 2020, BRAIN, V143, P2027, DOI 10.1093/brain/awaa152
  24. Kwong A, 2022, BIOINFORMATICS, V38, P559, DOI 10.1093/bioinformatics/btab614
  25. LEWONTIN RC, 1960, EVOLUTION, V14, P458, DOI 10.2307/2405995
  26. Liem M, 2017, PROTEOMICS, V17, DOI 10.1002/pmic.201600371
  27. Linhares ND, 2020, PHARMACOGENOMICS, V21, P509, DOI 10.2217/pgs-2020-0010
  28. Liu Y, 2020, J CLIN ENDOCR METAB, V105, DOI 10.1210/clinem/dgaa572
  29. Ma XY, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10117-3
  30. Machiela MJ, 2015, BIOINFORMATICS, V31, P3555, DOI 10.1093/bioinformatics/btv402
  31. McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4
  32. Meijer J, 2013, NUCLEOS NUCLEOT NUCL, V32, P639, DOI 10.1080/15257770.2013.847189
  33. Mueller WF, 2015, J BIOL CHEM, V290, P27700, DOI 10.1074/jbc.M115.684035
  34. Nishizaki SS, 2017, TRENDS GENET, V33, P34, DOI 10.1016/j.tig.2016.10.008
  35. Olayinka-Adefemi F, 2021, J IMMUNOL, V207, P1401, DOI 10.4049/jimmunol.2100311
  36. Dias JCP, 2016, EPIDEMIOL SERV SAUDE, V25, P7, DOI [10.5123/S1679-49742016000500002, 10.5123/s1679-49742016000500002]
  37. Plotkin JB, 2011, NAT REV GENET, V12, P32, DOI 10.1038/nrg2899
  38. Robert F, 2018, FRONT GENET, V9, DOI 10.3389/fgene.2018.00507
  39. Sauna Z.E., 2013, ELS, DOI [10.1002/9780470015902.A0025173, DOI 10.1002/9780470015902.A0025173]
  40. Schabbauer G, 2008, MOL IMMUNOL, V45, P2790, DOI 10.1016/j.molimm.2008.02.001
  41. Schmiedel BJ, 2018, CELL, V175, P1701, DOI 10.1016/j.cell.2018.10.022
  42. Silva MC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03986-3
  43. Silva MC, 2021, INFECT GENET EVOL, V88, DOI 10.1016/j.meegid.2020.104671
  44. Simhadri VL, 2017, J MED GENET, V54, P338, DOI 10.1136/jmedgenet-2016-104072
  45. Taheri M, 2020, MULT SCLER RELAT DIS, V40, DOI 10.1016/j.msard.2020.101986
  46. Wang MY, 2016, SCI REP-UK, V6, DOI 10.1038/srep20008
  47. Wang YC, 2015, INT J MOL SCI, V16, P23545, DOI 10.3390/ijms161023545
  48. Xiang KL, 2018, MOL MED REP, V17, P4713, DOI 10.3892/mmr.2018.8395
  49. Zhang HB, 2007, J CLIN INVEST, V117, P730, DOI 10.1172/JCI28984