Proteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasis

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
PARASITOLOGY RESEARCH, v.121, n.11, p.3155-3170, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Serodiagnosis of human strongyloidiasis is a practical alternative to parasitological methods due to its high sensitivity. However, cross-reactivity with other helminth infections limits its utility, and this problem is due to the use of homologous or heterologous somatic extracts of the parasite as an antigen source. Excretory-secretory (E/S) products from Strongyloides infective larvae can be used to improve the serodiagnosis. The combined use of western blot and proteomics became an interesting strategy to identify immunological markers for the serodiagnosis of strongyloidiasis. The present study describes the proteomic analysis of the antigenic components from E/S products of S. venezuelensis infective larvae that were recognized by IgG antibodies from patients with strongyloidiasis. Our results showed that IgG antibodies from patients with strongyloidiasis recognized between 15 and 16 antigenic bands in the E/S products from S. venezuelensis that were incubated in PBS or in RPMI culture medium, respectively. Overall, antigenic bands of low and high molecular weight were more specific than those of intermediate molecular weight, which were cross-reactive. A 36-kDa antigenic band was 93% sensitive and 100% specific (a probably arginine kinase of 37 kDa), while other antigenic bands were highly sensitive but low specific. Proteomic analysis revealed differences between the protein profiles from E/S-RPMI and E/S-PBS since only one-third of all proteins identified were common in both types of E/S products. Bioinformatic analysis showed that more than 50% of the proteins from E/S products are secreted within extracellular vesicles and only a small percentage of them are actually released by the classical secretory pathway. Several components from the E/S products were identified as plasminogenbinding proteins, probably used as an immune evasion mechanism. The data provided here provide valuable information to increase understanding of E/S products from S. venezuelensis infective larvae. This may help us to find new targets for the immunodiagnosis of human strongyloidiasis.
Palavras-chave
Strongyloides, Excretory-secretory products, Western blot, Antibody, Antigen, Proteomics
Referências
  1. Ayon-Nunez DA, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20180705
  2. Barrett J, 2009, PARASITOLOGY, V136, P1633, DOI 10.1017/S003118200900568X
  3. BRINDLEY PJ, 1988, MOL BIOCHEM PARASIT, V28, P171, DOI 10.1016/0166-6851(88)90001-1
  4. Buonfrate D, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9060468
  5. Casado L, 2019, INT J INFECT DIS, V88, P60, DOI 10.1016/j.ijid.2019.09.003
  6. CONWAY DJ, 1993, J INFECT DIS, V168, P784, DOI 10.1093/infdis/168.3.784
  7. CONWAY DJ, 1993, T ROY SOC TROP MED H, V87, P173, DOI 10.1016/0035-9203(93)90477-8
  8. Cornejo-Granados F, 2019, GENOMICS, V111, P1514, DOI 10.1016/j.ygeno.2018.10.007
  9. Corral MA, 2017, PARASITOLOGY, V144, P124, DOI 10.1017/S0031182016001645
  10. Cunha RA, 2017, PARASITOL INT, V66, P671, DOI 10.1016/j.parint.2017.07.001
  11. Diosdado A, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04067-5
  12. Drurey C, 2021, MOL IMMUNOL, V137, P124, DOI 10.1016/j.molimm.2021.06.017
  13. Gadahi JA, 2016, EXP PARASITOL, V171, P57, DOI 10.1016/j.exppara.2016.10.014
  14. Gao H, 2016, PARASITOL RES, V115, P151, DOI 10.1007/s00436-015-4730-6
  15. Gomez-Arreaza A, 2014, MOL BIOCHEM PARASIT, V193, P75, DOI 10.1016/j.molbiopara.2014.02.005
  16. Gonzalez-Miguel J, 2016, TRENDS PARASITOL, V32, P325, DOI 10.1016/j.pt.2015.12.012
  17. Hansen EP, 2019, J EXTRACELL VESICLES, V8, DOI 10.1080/20013078.2019.1578116
  18. Lok James B, 2007, WormBook, P1
  19. Maeda Y, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-018-3266-x
  20. Maizels RM, 2018, IMMUNITY, V49, P801, DOI 10.1016/j.immuni.2018.10.016
  21. Marcilla A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045974
  22. Masoori L, 2019, T ROY SOC TROP MED H, V113, P326, DOI 10.1093/trstmh/trz006
  23. Matsumoto H, 2019, METHODS MOL BIOL, V1855, P101, DOI 10.1007/978-1-4939-8793-1_10
  24. Nutman TB, 2017, PARASITOLOGY, V144, P263, DOI 10.1017/S0031182016000834
  25. Ponce R, 2018, EXP PARASITOL, V191, P44, DOI 10.1016/j.exppara.2018.06.001
  26. Requena-Mendez A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002002
  27. Rodpai R, 2017, PARASITOL RES, V116, P1687, DOI 10.1007/s00436-017-5443-9
  28. Rodpai R, 2016, PARASITOL RES, V115, P4007, DOI 10.1007/s00436-016-5170-7
  29. Gonzales WHR, 2021, PARASITOLOGY, V148, P1522, DOI 10.1017/S0031182021001207
  30. Salvador F, 2020, TROP MED INT HEALTH, V25, P281, DOI 10.1111/tmi.13352
  31. SATO Y, 1990, T ROY SOC TROP MED H, V84, P403, DOI 10.1016/0035-9203(90)90337-E
  32. Shevchenko A, 1996, ANAL CHEM, V68, P850, DOI 10.1021/ac950914h
  33. Soblik H, 2011, MOL CELL PROTEOMICS, V10, DOI [10.1074/mcp.M111.010157, 10.1074/mcp.M111.010157-1]
  34. Stadelmann B, 2010, INT J PARASITOL, V40, P1563, DOI 10.1016/j.ijpara.2010.05.009
  35. Sudre AP, 2007, PARASITOL RES, V101, P1117, DOI 10.1007/s00436-007-0596-6
  36. Tian AL, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2745-4
  37. Tritten L, 2017, EXP PARASITOL, V178, P30, DOI 10.1016/j.exppara.2017.05.003
  38. Tsuji N, 1997, PARASITOL RES, V83, P99, DOI 10.1007/s004360050218
  39. Varghese A, 2017, ACTA PARASITOL, V62, P775, DOI 10.1515/ap-2017-0093
  40. Vasquez-Rios George, 2019, J Parasit Dis, V43, P167, DOI 10.1007/s12639-019-01090-x
  41. Wang LQ, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04186-z
  42. Wilbers RHP, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1007300
  43. Zhao LL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55351-z