Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant Shedding and Predictors of Viral Culture Positivity on Vaccinated Healthcare Workers With Mild Coronavirus Disease 2019

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Citação
JOURNAL OF INFECTIOUS DISEASES, v.226, n.10, p.1726-1730, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We evaluated the duration of viral culture positivity compared to rapid antigen test (RAT) and real-time reverse-transcription polymerase chain reaction (RT-PCR) in mild Omicron infection. Vaccinated persons are potentially transmissible up to day 7. RAT and RT-PCR are predictors of viral culture positivity. In this prospective cohort of 30 vaccinated healthcare workers with mild Omicron variant infection, we evaluated viral culture, rapid antigen test (RAT), and real-time reverse-transcription polymerase chain reaction (RT-PCR) of respiratory samples at days 5, 7, 10, and 14. Viral culture was positive in 46% (11/24) and 20% (6/30) of samples at days 5 and 7, respectively. RAT and RT-PCR (Ct <= 35) showed 100% negative predictive value (NPV), with positive predictive values (PPVs) of 32% and 17%, respectively, for predicting viral culture positivity. A lower RT-PCR threshold (Ct <= 24) improved culture prediction (PPV = 39%; NPV = 100%). Vaccinated persons with mild Omicron infection are potentially transmissible up to day 7. RAT and RT-PCR might be useful tools for shortening the isolation period.
Palavras-chave
RT-PCR, SARS-CoV-2, Omicron variant, rapid antigen test, viral culture
Referências
  1. Basile K, 2021, CLIN INFECT DIS, V73, pE2952, DOI 10.1093/cid/ciaa1579
  2. Boucau J, 2022, NEW ENGL J MED, V387, P275, DOI 10.1056/NEJMc2202092
  3. Bouton TC, 2022, CLIN INFECT DIS, DOI 10.1093/cid/ciac510
  4. Centers for Disease Control and Prevention, INT GUID MAN HEALTHC
  5. Chen JH, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03240-7
  6. Eyre DW, 2022, NEW ENGL J MED, V386, P744, DOI 10.1056/NEJMoa2116597
  7. Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1126/science.abh2644, 10.1126/science.abh2644Article, 10.1101/2021.02.26.21252554]
  8. Gniazdowski V, 2021, CLIN INFECT DIS, V73, pE860, DOI 10.1093/cid/ciaa1616
  9. Karim SSA, 2021, LANCET, V398, P2126, DOI 10.1016/S0140-6736(21)02758-6
  10. Keske Siran, 2022, Clin Microbiol Infect, DOI 10.1016/j.cmi.2022.07.009
  11. Korenkov M, 2021, J CLIN MICROBIOL, V59, DOI 10.1128/JCM.00896-21
  12. Lopera TJ, 2022, MICROBIOL SPECTR, V10, DOI 10.1128/spectrum.01962-21
  13. Rambaut A, 2020, NAT MICROBIOL, V5, P1403, DOI 10.1038/s41564-020-0770-5
  14. Visseaux B, 2020, J CLIN VIROL, V129, DOI 10.1016/j.jcv.2020.104520
  15. Zhao J, 2020, ELECTR ENG, V102, P2281, DOI 10.1007/s00202-020-01026-2