Prenatal exposure to Cannabis smoke induces early and lasting damage to the brain

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
DOMENICO, Marlise D.
DIAS, Clarissa Tavares
MENDES-DA-SILVA, Cristiano
ALVES, Nilmara de O.
CAUMO, Sofia Ellen da S.
VASCONCELLOS, Perola
MORAIS, Damila R.
CARDOSO, Marilia S.
Citação
NEUROCHEMISTRY INTERNATIONAL, v.160, article ID 105406, 15p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cannabis is the most widely used illegal drug during pregnancy, however, the effects of gestational exposure to Cannabis smoke (CS) on the central nervous system development remain uncharacterised. This study investigates the effects of maternal CS inhalation on brain function in the offspring. Pregnant mice were exposed daily to 5 min of CS during gestational days (GD) 5.5-17.5. On GD 18.5 half of the dams were euthanized for foetus removal. The offspring from the remaining dams were euthanized on postnatal days (PND) 20 and 60 for evaluation. Brain volume, cortex cell number, SOX2, histone-H3, parvalbumin, NeuN, and BDNF immunoreac-tivity were assessed in all groups. In addition, levels of NeuN, CB1 receptor, and BDNF expression were assessed and cortical primary neurons from rats were treated with Cannabis smoke extract (CSE) for assessment of cell viability. We found that male foetuses from the CS exposed group had decreased brain volume, whereas mice at PND 60 from the exposed group presented with increased brain volume. Olfactory bulb and diencephalon vol-ume were found lower in foetuses exposed to CS. Mice at PND 60 from the exposed group had a smaller volume in the thalamus and hypothalamus while the cerebellum presented with a greater volume. Also, there was an increase in cortical BDNF immunoreactivity in CS exposed mice at PND 60. Protein expression analysis showed an increase in pro-BDNF in foetus brains exposed to CS. Mice at PND 60 presented an increase in mature BDNF in the prefrontal cortex (PFC) in the exposed group and a higher CB1 receptor expression in the PFC. Moreover, hippocampal NeuN expression was higher in adult animals from the exposed group. Lastly, treatment of cortical primary neurons with doses of CSE resulted in decreased cell viability. These findings highlight the potential negative neurodevelopmental outcomes induced by gestational CS exposure.
Palavras-chave
Cannabinoids, Gestation, Brain development, Neuron, Cannabis smoke extract
Referências
  1. Aguado T, 2005, FASEB J, V19, P1704, DOI 10.1096/fj.05-3995fje
  2. Akhavan O, 2016, MAT SCI ENG C-MATER, V69, P52, DOI 10.1016/j.msec.2016.06.055
  3. Akhavan O, 2015, CARBON, V95, P309, DOI 10.1016/j.carbon.2015.08.017
  4. Alexandre J, 2020, ADDICT BIOL, V25, DOI 10.1111/adb.12824
  5. Alteba S, 2016, LEARN MEMORY, V23, P349, DOI 10.1101/lm.041608.116
  6. Amlani A, 2017, DEV NEUROSCI-BASEL, V39, P498, DOI 10.1159/000480453
  7. Arevalo-Martin A, 2007, EUR J NEUROSCI, V26, P1548, DOI 10.1111/j.1460-9568.2007.05782.x
  8. Athanasiou A, 2007, BIOCHEM BIOPH RES CO, V364, P131, DOI 10.1016/j.bbrc.2007.09.107
  9. Badowski S, 2020, CAN FAM PHYSICIAN, V66, P98
  10. Balali-Mood M, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.643972
  11. Battistella G, 2014, NEUROPSYCHOPHARMACOL, V39, P2041, DOI 10.1038/npp.2014.67
  12. Hashimoto K, 2007, BIOESSAYS, V29, P116, DOI 10.1002/bies.20534
  13. Hayatbakhsh MR, 2012, PEDIATR RES, V71, P215, DOI 10.1038/pr.2011.25
  14. Herning RI, 2005, NEUROLOGY, V64, P488, DOI 10.1212/01.WNL.0000150882.69371.DD
  15. Hill SY, 2007, BIOL PSYCHIAT, V61, P41, DOI 10.1016/j.biopsych.2006.01.007
  16. Huang EJ, 2001, ANNU REV NEUROSCI, V24, P677, DOI 10.1146/annurev.neuro.24.1.677
  17. HUTCHINGS DE, 1989, LIFE SCI, V44, P697, DOI 10.1016/0024-3205(89)90380-9
  18. Iavicoli I, 2009, J TOXICOL ENV HEAL B, V12, P206, DOI 10.1080/10937400902902062
  19. Ibanez CF, 2002, TRENDS NEUROSCI, V25, P284, DOI 10.1016/S0166-2236(02)02169-0
  20. Jansson LM, 2018, JAMA-J AM MED ASSOC, V320, P545, DOI 10.1001/jama.2018.8401
  21. Kaila K, 2014, NAT REV NEUROSCI, V15, P637, DOI 10.1038/nrn3819
  22. Owens MM, 2021, ADDICT BIOL, V26, DOI 10.1111/adb.12874
  23. Koenders L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152482
  24. Lee JJ, 2004, ATMOS ENVIRON, V38, P6185, DOI 10.1016/j.atmosenv.2004.07.024
  25. LEE ML, 1976, ANAL CHEM, V48, P405, DOI 10.1021/ac60366a048
  26. Li AJ, 2019, J ENVIRON SCI, V80, P99, DOI 10.1016/j.jes.2018.11.004
  27. Lopez-Moreno JA, 2008, ADDICT BIOL, V13, P160, DOI 10.1111/j.1369-1600.2008.00105.x
  28. Lorenzetti V, 2019, EUR ARCH PSY CLIN N, V269, P59, DOI 10.1007/s00406-019-00979-1
  29. Lorenzetti V, 2016, BIOL PSYCHIAT, V79, pE17, DOI 10.1016/j.biopsych.2015.11.013
  30. Maccarrone M, 2005, HANDB EXP PHARMACOL, V168, P555
  31. Macias-Triana L, 2020, EUR J PHARMACOL, V874, DOI 10.1016/j.ejphar.2020.172911
  32. Marzinzik F, 2008, J COGNITIVE NEUROSCI, V20, P1903, DOI 10.1162/jocn.2008.20124
  33. Paus T, 2005, TRENDS COGN SCI, V9, P60, DOI 10.1016/j.tics.2004.12.008
  34. Mashhoon Y, 2015, DRUG ALCOHOL DEPEN, V155, P275, DOI 10.1016/j.drugalcdep.2015.06.016
  35. Mateos B, 2011, J PSYCHOPHARMACOL, V25, P1676, DOI 10.1177/0269881110370503
  36. Matochik JA, 2005, DRUG ALCOHOL DEPEN, V77, P23, DOI 10.1016/j.drugalcdep.2004.06.011
  37. McLemore GL, 2016, DATA BRIEF, V9, P753, DOI 10.1016/j.dib.2016.10.005
  38. Medina KL, 2007, J CHILD PSYCHOL PSYC, V48, P592, DOI 10.1111/j.1469-7610.2007.01728.x
  39. Medina KL, 2010, PSYCHIAT RES-NEUROIM, V182, P152, DOI 10.1016/j.pscychresns.2009.12.004
  40. Meier MH, 2019, DRUG ALCOHOL DEPEN, V202, P191, DOI 10.1016/j.drugalcdep.2019.05.012
  41. Mereu G, 2003, P NATL ACAD SCI USA, V100, P4915, DOI 10.1073/pnas.0537849100
  42. Merlob P, 2017, PEDIATR ENDOCR REV P, V15, P4, DOI 10.17458/per.vol15.2017.msk.fd.cannabispregnantmother
  43. Miguez MJ, 2020, NEURAL PLAST, V2020, DOI 10.1155/2020/3937627
  44. Perera F, 2015, ENVIRON RES, V142, P602, DOI 10.1016/j.envres.2015.08.011
  45. Miller Rachel L, 2016, Neuroepigenetics, V5, P11
  46. Moir D, 2008, CHEM RES TOXICOL, V21, P494, DOI 10.1021/tx700275p
  47. Monnet-Tschudi F, 2008, TOXICOL APPL PHARM, V228, P8, DOI 10.1016/j.taap.2007.11.007
  48. Murray Patrick S, 2011, Int J Pept, V2011, P654085, DOI 10.1155/2011/654085
  49. Naujokas MF, 2013, ENVIRON HEALTH PERSP, V121, P295, DOI 10.1289/ehp.1205875
  50. Niederhoffer N, 2001, BRIT J PHARMACOL, V134, P1319, DOI 10.1038/sj.bjp.0704359
  51. Peterson BS, 2015, JAMA PSYCHIAT, V72, P531, DOI 10.1001/jamapsychiatry.2015.57
  52. Prenderville JA, 2015, BRIT J PHARMACOL, V172, P3950, DOI 10.1111/bph.13186
  53. Richardson KA, 2016, NEUROTOXICOL TERATOL, V58, P5, DOI 10.1016/j.ntt.2016.08.003
  54. Rubino T, 2008, NEUROPSYCHOPHARMACOL, V33, P2760, DOI 10.1038/sj.npp.1301664
  55. Rubino T, 2006, MOL NEUROBIOL, V33, P199, DOI 10.1385/MN:33:3:199
  56. Sandi C, 2015, NAT REV NEUROSCI, V16, P290, DOI 10.1038/nrn3918
  57. Sarafian TA, 1999, AM J RESP CELL MOL, V20, P1286, DOI 10.1165/ajrcmb.20.6.3424
  58. Bayrampour H, 2019, PREV MED, V119, P17, DOI 10.1016/j.ypmed.2018.12.002
  59. Sarafian TA, 2001, TOXICOL APPL PHARM, V174, P264, DOI 10.1006/taap.2001.9224
  60. Saunders CR, 2002, TOXICOL LETT, V129, P33, DOI 10.1016/S0378-4274(01)00467-2
  61. Scheyer AF, 2019, TRENDS NEUROSCI, V42, P871, DOI 10.1016/j.tins.2019.08.010
  62. Segal-Gavish H, 2017, HUM MOL GENET, V26, P2462, DOI 10.1093/hmg/ddx139
  63. Seltenrich N, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP5785
  64. Silva L, 2016, NEUROTOXICOL TERATOL, V58, P88, DOI 10.1016/j.ntt.2016.02.005
  65. Silveira MM, 2017, NEUROSCI BIOBEHAV R, V76, P380, DOI 10.1016/j.neubiorev.2016.09.007
  66. Sun BF, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137810
  67. Tang ML, 2013, BIOMATERIALS, V34, P6402, DOI 10.1016/j.biomaterials.2013.05.024
  68. Tinsley CJ, 2001, EXP NEUROL, V168, P88, DOI 10.1006/exnr.2000.7578
  69. Foltran RB, 2016, J NEUROCHEM, V138, P204, DOI 10.1111/jnc.13658
  70. Tonini R, 2006, J NEUROSCI, V26, P5810, DOI 10.1523/JNEUROSCI.5469-05.2006
  71. Trezza V, 2008, PSYCHOPHARMACOLOGY, V198, P529, DOI 10.1007/s00213-008-1162-3
  72. Tzilos GK, 2005, AM J ADDICTION, V14, P64, DOI 10.1080/10550490590899862
  73. United Nations Office on Drugs and Crime, 2017, WORLD DRUG REPORT 20
  74. Valjent E, 2001, EUR J NEUROSCI, V14, P342, DOI 10.1046/j.0953-816x.2001.01652.x
  75. Wang ZJ, 2012, J NEUROSCI, V32, P8475, DOI 10.1523/JNEUROSCI.5333-11.2012
  76. Wardle RA, 2003, J NEUROSCI, V23, P8722
  77. Wei BN, 2016, ENVIRON INT, V88, P1, DOI 10.1016/j.envint.2015.12.003
  78. Weiland BJ, 2015, J NEUROSCI, V35, P1505, DOI 10.1523/JNEUROSCI.2946-14.2015
  79. Xapelli S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063529
  80. Benard G, 2012, NAT NEUROSCI, V15, P558, DOI 10.1038/nn.3053
  81. Yamaori S, 2012, DRUG METAB PHARMACOK, V27, P294, DOI 10.2133/dmpk.DMPK-11-RG-107
  82. Yeh ML, 2017, SYNAPSE, V71, DOI 10.1002/syn.21962
  83. Yucel M, 2016, TRANSL PSYCHIAT, V6, DOI 10.1038/tp.2015.201
  84. Zaw YH, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218409
  85. Zhang WP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149574
  86. Zhao LF, 2015, ENEURO, V2, DOI 10.1523/ENEURO.0029-14.2015
  87. Benevenuto SG, 2017, TOXICOLOGY, V376, P94, DOI 10.1016/j.tox.2016.05.020
  88. Berghuis P, 2005, P NATL ACAD SCI USA, V102, P19115, DOI 10.1073/pnas.0509494102
  89. Borodinova A.A., 2017, NEUROSCI BEHAV PHYSL, V47, P251, DOI [10.1007/s11055-017-0391-5, DOI 10.1007/s11055-017-0391-5]
  90. Brockmeyer S, 2016, TRANSL NEUROSCI, V7, P24, DOI 10.1515/tnsci-2016-0005
  91. Brown QL, 2017, JAMA-J AM MED ASSOC, V317, P207, DOI 10.1001/jama.2016.17383
  92. Burston JJ, 2010, BRIT J PHARMACOL, V161, P103, DOI 10.1111/j.1476-5381.2010.00870.x
  93. Butovsky E, 2005, J NEUROCHEM, V93, P802, DOI 10.1111/j.1471-4159.2005.03074.x
  94. Butti E, 2012, BRAIN, V135, P3320, DOI 10.1093/brain/aws194
  95. Castelli MP, 2007, EUR J PHARMACOL, V573, P11, DOI 10.1016/j.ejphar.2007.06.047
  96. Castelli MP, 2014, CURR PHARM DESIGN, V20, P2100, DOI 10.2174/13816128113199990430
  97. Caumo S, 2018, AIR QUAL ATMOS HLTH, V11, P271, DOI 10.1007/s11869-017-0531-7
  98. Chao MV, 2002, NEURON, V33, P9, DOI 10.1016/S0896-6273(01)00573-6
  99. Chen Pan, 2016, F1000Res, V5, DOI 10.12688/f1000research.7431.1
  100. Chye Y, 2019, ADDICT BIOL, V24, P822, DOI 10.1111/adb.12652
  101. Citti C, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56785-1
  102. Corsi DJ, 2020, NAT MED, V26, P1536, DOI 10.1038/s41591-020-1002-5
  103. Cousijn J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042394
  104. Crepeaux G, 2012, TOXICOL LETT, V211, P105, DOI 10.1016/j.toxlet.2012.03.005
  105. Das SK, 2016, J TOXICOL-US, V2016, DOI 10.1155/2016/8606410
  106. DAY NL, 1994, NEUROTOXICOL TERATOL, V16, P169, DOI 10.1016/0892-0362(94)90114-7
  107. De Chiara V, 2010, J NEUROSCI, V30, P8127, DOI 10.1523/JNEUROSCI.1683-10.2010
  108. de Oliveira RW, 2019, ACTA NEUROPSYCHIATR, V31, P1, DOI 10.1017/neu.2018.11
  109. de Salas-Quiroga A, 2015, P NATL ACAD SCI USA, V112, P13693, DOI 10.1073/pnas.1514962112
  110. Deinhardt K, 2014, NEUROPHARMACOLOGY, V76, P603, DOI 10.1016/j.neuropharm.2013.04.054
  111. Derkinderen P, 2003, J NEUROSCI, V23, P2371
  112. Diaz-Alonso J, 2012, PHILOS T R SOC B, V367, P3229, DOI 10.1098/rstb.2011.0385
  113. Drwal E, 2019, TOXICOLOGY, V411, P133, DOI 10.1016/j.tox.2018.10.003
  114. El Marroun H, 2016, BIOL PSYCHIAT, V79, P971, DOI 10.1016/j.biopsych.2015.08.024
  115. El Marroun H, 2011, DRUG ALCOHOL DEPEN, V118, P470, DOI 10.1016/j.drugalcdep.2011.03.004
  116. EMCDDA-European Monitoring Centre for Drugs and Drug Addiction, CANNABIS DRUG PROFIL
  117. EPA-US Environmental Protection Agency, 2012, APTI COURSE 435 ATMO
  118. Ferreira FF, 2018, FRONT CELL NEUROSCI, V12, DOI 10.3389/fncel.2018.00441
  119. Filbey FM, 2015, DEV COGN NEUROS-NETH, V16, P16, DOI 10.1016/j.dcn.2015.10.001
  120. Food and Drug Administration,, FDA REGULATION CANNA
  121. Fride E, 1996, PSYCHONEUROENDOCRINO, V21, P157, DOI 10.1016/0306-4530(95)00039-9
  122. Fried PA, 2001, NEUROTOXICOL TERATOL, V23, P1, DOI 10.1016/S0892-0362(00)00119-7
  123. Fried PA, 2000, NEUROTOXICOL TERATOL, V22, P11, DOI 10.1016/S0892-0362(99)00046-X
  124. Fried PA, 2002, J CHILD PSYCHOL PSYC, V43, P81, DOI 10.1111/1469-7610.00005
  125. Friedrich J, 2016, BMC PHARMACOL TOXICO, V17, DOI 10.1186/s40360-016-0085-6
  126. Galve-Roperh I, 2013, PROG LIPID RES, V52, P633, DOI 10.1016/j.plipres.2013.05.004
  127. Garcia-Amado M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038692
  128. Gilman JM, 2014, J NEUROSCI, V34, P5529, DOI 10.1523/JNEUROSCI.4745-13.2014
  129. Govarts E, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13050495
  130. Guilarte TR, 2000, MOL BRAIN RES, V76, P299, DOI 10.1016/S0169-328X(00)00010-3
  131. Gundacker C, 2012, WIEN MED WOCHENSCHR, V162, P201, DOI 10.1007/s10354-012-0074-3
  132. GUNDERSEN HJG, 1988, APMIS, V96, P379, DOI 10.1111/j.1699-0463.1988.tb05320.x
  133. GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229, DOI 10.1111/j.1365-2818.1987.tb02837.x
  134. Gunn JKL, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-009986
  135. Halassa MM, 2017, NAT NEUROSCI, V20, P1669, DOI 10.1038/s41593-017-0020-1
  136. Hall W, 2009, LANCET, V374, P1383, DOI 10.1016/S0140-6736(09)61037-0