Treatment of rabbits with atherosclerosis induced by cholesterol feeding with daunorubicin associated to a lipid core nanoparticle (LDE)

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, v.79, article ID 104067, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Atherosclerosis is a cell-proliferative, chronic inflammatory process. The aim was to investigate whether lipid core nanoparticles (LDE) carrying the anti-cancer agent daunorubicin could have anti-atherosclerotic effects. LDE is taken-up by cellular lipoprotein receptors and is capable of concentrating incorporated drugs in inflammed tissues. New Zealand male rabbits were fed 1% cholesterol diet for 8 weeks. Then, animals were treated with LDE-daunorubicin (6 mg/kg/week, IV, n = 9) or with LDE only (n = 7). Atherosclerotic lesions in LDE-daunorubicin group were 50% smaller than in LDE group. In LDE-daunorubicin, protein expressions of the pro-inflammatory markers CD68, TNF-alpha IL-6 and gene expression MCP-1 were lower than in LDE. Gene expression of IL-1 beta, IL-18 and IL-10 were similar. Protein expressions of VEGF and of pro-apoptotic caspase 3, caspase 9 and BAX, and both protein and gene expressions of VCAM-1 were all lower in LDE-daunorubicin. Gene expression of MMP-12 and protein expression of MMP-2 were lower in LDE-daunorubicin, but MMP-9 was not different. Daunorubicin is known as cardiotoxic, but at echocardiography, LDE-daunorubicin had no differences in arch aorta diameters, systolic and diastolic function and in cardiac hypertrophy compared to LDE group. LDEdaunorubicin was capable of reducing atherosclerotic lesions by different mechanisms without observable toxicities.
Palavras-chave
Drug toxicity, Drug delivery, Lipid nanoparticles, Inflammation, Cardiotoxicity, Chemotherapeutic agents
Referências
  1. Alrbyawi H, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14061128
  2. Boyd A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175544
  3. Bulgarelli A, 2013, CARDIOVASC DRUG THER, V27, P531, DOI 10.1007/s10557-013-6488-3
  4. Camare C, 2017, REDOX BIOL, V12, P18, DOI 10.1016/j.redox.2017.01.007
  5. Cejkova S, 2019, CELL ADHES MIGR, V13, P293, DOI 10.1080/19336918.2019.1644856
  6. Chou CC, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8120620
  7. Contente TC, 2014, J PHARM PHARMACOL, V66, P1698, DOI 10.1111/jphp.12296
  8. Dabravolski SA, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020931
  9. Daminelli EN, 2016, CARDIOVASC DRUG THER, V30, P433, DOI 10.1007/s10557-016-6675-0
  10. Edwardson DW, 2015, CURR DRUG METAB, V16, P412, DOI 10.2174/1389200216888150915112039
  11. Gautier EL, 2009, CIRCULATION, V119, P1795, DOI 10.1161/CIRCULATIONAHA.108.806158
  12. Graziani SR, 2017, MED ONCOL, V34, DOI 10.1007/s12032-017-1009-z
  13. Guo ZY, 2018, EXP THER MED, V16, P2071, DOI 10.3892/etm.2018.6424
  14. Hungria VTM, 2004, CANCER CHEMOTH PHARM, V53, P51, DOI 10.1007/s00280-003-0692-y
  15. Lee SG, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0215604
  16. Libby P, 2021, CARDIOVASC RES, V117, P2525, DOI 10.1093/cvr/cvab303
  17. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  18. Maranhao RC, 2008, ATHEROSCLEROSIS, V197, P959, DOI 10.1016/j.atherosclerosis.2007.12.051
  19. MARANHAO RC, 1993, LIPIDS, V28, P691, DOI 10.1007/BF02535988
  20. Maranhao RC, 2002, CANCER CHEMOTH PHARM, V49, P487, DOI 10.1007/s00280-002-0437-3
  21. McGowan JV, 2017, CARDIOVASC DRUG THER, V31, P63, DOI 10.1007/s10557-016-6711-0
  22. Meneghini BC, 2019, VASC PHARMACOL, V115, P46, DOI 10.1016/j.vph.2019.02.003
  23. Padoveze AF, 2009, BRAZ J MED BIOL RES, V42, P172, DOI 10.1590/S0100-879X2009000200005
  24. Pinheiro KV, 2006, CANCER CHEMOTH PHARM, V57, P624, DOI 10.1007/s00280-005-0090-8
  25. Pires L, 2009, CANCER CHEMOTH PHARM, V63, P281, DOI 10.1007/s00280-008-0738-2
  26. Rodrigues DG, 2005, CANCER CHEMOTH PHARM, V55, P565, DOI 10.1007/s00280-004-0930-y
  27. Rohr SS, 2020, BIOL BLOOD MARROW TR, V26, P2027, DOI 10.1016/j.bbmt.2020.07.010
  28. Sampaio DPS, 2022, CARDIO-ONCOLOGY, V8, DOI 10.1186/s40959-022-00143-0
  29. Shiozaki AA, 2016, CLINICS, V71, P435, DOI 10.6061/clinics/2016(08)05
  30. Simunek T, 2004, EUR J HEART FAIL, V6, P377, DOI 10.1016/j.ejheart.2003.05.003
  31. Talavera J, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/465342
  32. Tavares ER, 2011, INT J NANOMED, V6, P2297, DOI 10.2147/IJN.S24048
  33. Teixeira RS, 2008, J PHARM PHARMACOL, V60, P1287, DOI 10.1211/jpp/60.10.0004
  34. TEWEY KM, 1984, SCIENCE, V226, P466, DOI 10.1126/science.6093249
  35. Wang L, 2017, PEPTIDES, V90, P17, DOI 10.1016/j.peptides.2017.01.013
  36. Zhang L, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.942620