Growth Responses Following a Single Intra-Muscular hGH Plasmid Administration Compared to Daily Injections of hGH in Dwarf Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
BENTHAM SCIENCE PUBL LTD
Autores
HIGUTI, Eliza
CECCHI, Claudia R.
OLIVEIRA, Nelio A. J.
VIEIRA, Daniel P.
JENSEN, Thomas G.
BARTOLINI, Paolo
PERONI, Cibele N.
Citação
CURRENT GENE THERAPY, v.12, n.6, p.437-443, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In previous work, sustained levels of circulating human growth hormone (hGH) and a highly significant weight increase were observed after electrotransfer of naked plasmid DNA (hGH-DNA) into the muscle of immunodeficient dwarf mice (lit/scid). In the present study, the efficacy of this in vivo gene therapy strategy is compared to daily injections (5 mu g/twice a day) of recombinant hGH (r-hGH) protein, as assessed on the basis of several growth parameters. The slopes of the two growth curves were found to be similar (P>0.05): 0.095 g/mouse/d for protein and 0.094 g/mouse/d for DNA injection. In contrast, the weight increases averaged 35.5% (P<0.001) and 23.1% (P<0.01) for protein and DNA administration, respectively, a difference possibly related to the electroporation methodology. The nose-to-tail linear growth increases were 15% and 9.6% for the protein and DNA treatments, respectively, but mouse insulin-like growth factor I (mIGF-I) showed a greater increase over the control with DNA (5- to 7-fold) than with protein (3- to 4-fold) administration. The weight increases of several organs and tissues (kidneys, spleen, liver, heart, quadriceps and gastrocnemius muscles) were 1.3- to 4.6-fold greater for protein than for DNA administration, which gave a generally more proportional growth. Glucose levels were apparently unaffected, suggesting the absence of effects on glucose tolerance. A gene transfer strategy based on a single hGH-DNA administration thus appears to be comparable to repeated hormone injections for promoting growth and may represent a feasible alternative for the treatment of growth hormone deficiency.
Palavras-chave
human growth hormone, immunodeficient little mice, mouse insulin-like growth factor I, naked DNA
Referências
  1. Baumgartner I, 2009, MOL THER, V17, P914, DOI 10.1038/mt.2009.24
  2. Bellini MH, 2003, FASEB J, V17, P2322, DOI 10.1096/fj.03-0018fje
  3. BELLINI MH, 1993, ENDOCRINOLOGY, V132, P2051, DOI 10.1210/en.132.5.2051
  4. Bodles-Brakhop AM, 2009, MOL THER, V17, P585, DOI 10.1038/mt.2009.5
  5. Braun S, 2008, CURR GENE THER, V8, P391, DOI 10.2174/156652308786070998
  6. Brown PA, 2009, BMC BIOTECHNOL, V9, DOI 10.1186/1472-6750-9-4
  7. Dagnaes-Hansen F, 2002, J MOL MED-JMM, V80, P665, DOI 10.1007/s00109-002-0371-1
  8. Daud AI, 2008, J CLIN ONCOL, V26, P5896, DOI 10.1200/JCO.2007.15.6794
  9. Deitel K, 2002, J SURG ONCOL, V81, P75, DOI 10.1002/jso.10136
  10. Draghia-Akli R, 2006, COMB CHEM HIGH T SCR, V9, P181, DOI 10.2174/138620706776055502
  11. Draghia-Akli R, 2002, MOL THER, V6, P830, DOI 10.1006/mthe.2002.0807
  12. DraghiaAkli R, 1997, NAT BIOTECHNOL, V15, P1285, DOI 10.1038/nbt1197-1285
  13. Draghia-Akli R, 2002, FASEB J, V16, P426, DOI 10.1096/fj.01-0702fje
  14. Draghia-Akli R, 1999, NAT BIOTECHNOL, V17, P1179, DOI 10.1038/70718
  15. EICHER EM, 1976, J HERED, V67, P87
  16. Fattori E, 2005, J GENE MED, V7, P228, DOI 10.1002/jgm.652
  17. Gazdhar A, 2006, J GENE MED, V8, P910, DOI 10.1002/jgm.911
  18. Gothelf A, 2010, CURR GENE THER, V10, P287
  19. Gothelf A, 2010, GENE THER, V17, P1077, DOI 10.1038/gt.2010.46
  20. Gupta R, 2009, CIRC RES, V105, P724, DOI 10.1161/CIRCRESAHA.109.200386
  21. JANSSON JO, 1986, SCIENCE, V232, P511, DOI 10.1126/science.3008329
  22. Khamaisi M, 2007, GROWTH HORM IGF RES, V17, P279, DOI 10.1016/j.ghir.2007.01.018
  23. Khan AS, 2010, MOL THER, V18, P327, DOI 10.1038/mt.2009.224
  24. LIN SC, 1993, NATURE, V364, P208, DOI 10.1038/364208a0
  25. Losordo DW, 2002, CIRCULATION, V105, P2012, DOI 10.1161/01.CIR.0000015982.70785.B7
  26. Melman A, 2007, ISRAEL MED ASSOC J, V9, P143
  27. Michaluart P, 2008, CANCER GENE THER, V15, P676, DOI 10.1038/cgt.2008.35
  28. Molitch ME, 2011, J CLIN ENDOCR METAB, V96, P1587, DOI 10.1210/jc.2011-0179
  29. Morishita R, 2011, ARTERIOSCL THROM VAS, V31, P713, DOI 10.1161/ATVBAHA.110.219550
  30. Murakami T, 2011, CURR GENE THER, V11, P447
  31. Oliveira JE, 1999, J CHROMATOGR A, V852, P441
  32. Oliveira NAJ, 2010, J GENE MED, V12, P580, DOI 10.1002/jgm.1470
  33. Peroni CN, 2005, CURR GENE THER, V5, P493, DOI 10.2174/156652305774329258
  34. Peroni CN, 2008, J GENE MED, V10, P734, DOI 10.1002/jgm.1196
  35. Peroni CN, 2006, MOL BIOTECHNOL, V34, P239, DOI 10.1385/MB:34:2:239
  36. Prud'homme GJ, 2007, GENE THER, V14, P553, DOI 10.1038/sj.gt.3302907
  37. Ratanamart J, 2006, CURR GENE THER, V6, P93, DOI 10.2174/156652306775515583
  38. RIBELA MTCP, 1993, J IMMUNOL METHODS, V159, P269, DOI 10.1016/0022-1759(93)90166-5
  39. Rocha MGM, 2008, J PEDIATR ENDOCR MET, V21, P673
  40. Salvatori R, 2004, REV ENDOCR METAB DIS, V5, P15, DOI 10.1023/B:REMD.0000016121.58762.6d
  41. Schorpp M, 1996, NUCLEIC ACIDS RES, V24, P1787, DOI 10.1093/nar/24.9.1787
  42. Sondergaard M, 2003, AM J PHYSIOL-ENDOC M, V285, pE427, DOI 10.1152/ajpendo.00573.2002
  43. Vijayakumar A, 2010, GROWTH HORM IGF RES, V20, P1, DOI 10.1016/j.ghir.2009.09.002