Prediction models for carbapenem-resistant Enterobacterales carriage at liver transplantation: A multicenter retrospective study

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
RINALDI, Matteo
FURTADO, Mariane
PASQUINI, Zeno
BARTOLETTI, Michele
OLIVEIRA, Tiago Almeida de
MACCARO, Angelo
Citação
TRANSPLANT INFECTIOUS DISEASE, v.24, n.6, article ID e13920, 11p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Carbapenem-resistant Enterobacterales (CRE) colonisation at liver transplantation (LT) increases the risk of CRE infection after LT, which impacts on recipients' survival. Colonization status usually becomes evident only near LT. Thus, predictive models can be useful to guide antibiotic prophylaxis in endemic centres. Aims: This study aimed to identify risk factors for CRE colonisation at LT in order to build a predictive model. Methods: Retrospective multicentre study including consecutive adult patients who underwent LT, from 2010 to 2019, at two large teaching hospitals. We excluded patients who had CRE infections within 90 days before LT. CRE screening was performed in all patients on the day of LT. Exposure variables were considered within 90 days before LT and included cirrhosis complications, underlying disease, time on the waiting list, MELD and CLIF-SOFA scores, antibiotic use, intensive care unit and hospital stay, and infections. A machine learning model was trained to detect the probability of a patient being colonized with CRE at LT. Results: A total of 1544 patients were analyzed, 116 (7.5%) patients were colonized by CRE at LT. The median time from CRE isolation to LT was 5 days. Use of antibiotics, hepato-renal syndrome, worst CLIF sofa score, and use of beta-lactam/beta-lactamase inhibitor increased the probability of a patient having pre-LT CRE. The proposed algorithm had a sensitivity of 66% and a specificity of 83% with a negative predictive value of 97%. Conclusions: We created a model able to predict CRE colonization at LT based on easyto-obtain features that could guide antibiotic prophylaxis
Palavras-chave
carbapenem-resistance, CLIF-SOFA score, machine learning, peritonitis prophylaxis, prediction model
Referências
  1. Abboud CS, 2013, BRAZ J INFECT DIS, V17, P254, DOI 10.1016/j.bjid.2012.10.016
  2. Allaire M, 2020, CLIN RES HEPATOL GAS, V44, P264, DOI 10.1016/j.clinre.2019.10.003
  3. [Anonymous], 2018, EUR COMM ANT SUSC TE
  4. Bartoletti M, 2018, INFECT DIS CLIN N AM, V32, P551, DOI 10.1016/j.idc.2018.04.004
  5. Bergstra James, 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014008
  6. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
  7. CDC/NHSN, 2021, SURV DEF SPEC TYP IN
  8. Centers for Disease Control and Prevention, 2021, MULT RES ORG CLOSTR
  9. Clinical and Laboratory Standards Institute (CLSI), 2019, PERFORMANCE STANDARD
  10. Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1161/CIRCULATIONAHA.114.014508, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1038/bjc.2014.639]
  11. Dorogush AV., CATBOOST GRADIENT BO
  12. European Assoc Study Liver, 2018, J HEPATOL, V69, P406, DOI 10.1016/j.jhep.2018.03.024
  13. Freire MP, 2021, DIAGN MICR INFEC DIS, V99, DOI 10.1016/j.diagmicrobio.2020.115220
  14. Freire MP, 2015, TRANSPLANTATION, V99, P521, DOI 10.1097/TP.0000000000000381
  15. Freire MP, 2017, TRANSPLANTATION, V101, P811, DOI [10.1097/tp.0000000000001620, 10.1097/TP.0000000000001620]
  16. Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1
  17. Giannella M, 2019, CLIN MICROBIOL INFEC, V25, P1525, DOI 10.1016/j.cmi.2019.04.014
  18. Giannella M, 2021, CLIN INFECT DIS, V73, pE955, DOI 10.1093/cid/ciab109
  19. Hsu JY., 2020, LIVER INT, V61, P1291, DOI [10.1016/j.cgh.2012.08.017, DOI 10.1016/J.CGH.2012.08.017]
  20. Ke GL, 2017, ADV NEUR IN, V30
  21. Logre E, 2021, TRANSPLANTATION, V105, P338, DOI 10.1097/TP.0000000000003231
  22. Macesic N, 2018, CLIN INFECT DIS, V67, P905, DOI 10.1093/cid/ciy199
  23. McGuire RJ, 2021, ANTIMICROB AGENTS CH, V65, DOI 10.1128/AAC.00063-21
  24. Moreau R, 2013, GASTROENTEROLOGY, V144, P1426, DOI 10.1053/j.gastro.2013.02.042
  25. Nutman A, 2020, CLIN INFECT DIS, V70, P1891, DOI 10.1093/cid/ciz524
  26. Perez-Nadales E, 2020, AM J TRANSPLANT, V20, P1629, DOI 10.1111/ajt.15769
  27. Pouch SM, 2019, CLIN TRANSPLANT, V33, DOI 10.1111/ctr.13594
  28. Taimur S, 2021, CLIN TRANSPLANT, V35, DOI 10.1111/ctr.14239
  29. van Loon K, 2018, ANTIMICROB AGENTS CH, V62, DOI 10.1128/AAC.01730-17
  30. Wiest R, 2014, J HEPATOL, V60, P197, DOI 10.1016/j.jhep.2013.07.044
  31. WILSON DL, 1972, IEEE T SYST MAN CYB, VSMC2, P408, DOI 10.1109/TSMC.1972.4309137