Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Autores
NUNEZ, Freddy A.
CASTRO, Ana C. H.
OLIVEIRA, Vivian L. de
LIMA, Ariane C.
OLIVEIRA, Jamille R.
MEDEIROS, Giuliana X. de
SASAHARA, Greyce L.
LANFREDI, Alexandre J. C.
ALVES, Wendel A.
Citação
ACS BIOMATERIALS SCIENCE & ENGINEERING, v.9, n.1, p.458-473, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Even after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.
Palavras-chave
seroprevalence, COVID-19, SARS-CoV-2, electrochemical immunosensors, zinc oxide, serological diagnosis, immunosurveillance, CoronaVac
Referências
  1. Ahmad R, 2016, RSC ADV, V6, P54836, DOI 10.1039/c6ra09731f
  2. Al-Fandi MG, 2018, SENSOR REV, V38, P326, DOI 10.1108/SR-06-2017-0117
  3. Al-Gaashani R, 2013, CERAM INT, V39, P2283, DOI 10.1016/j.ceramint.2012.08.075
  4. Alafeef M, 2020, ACS NANO, V14, P17028, DOI 10.1021/acsnano.0c06392
  5. Aydin EB, 2021, ACS BIOMATER SCI ENG, V7, P3874, DOI 10.1021/acsbiomaterials.1c00580
  6. Barbosa H. P., 2021, ZINC OXIDE MULTIFUNC, V55, P251
  7. Basto-Abreu A, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28232-9
  8. Batra N, 2014, THIN SOLID FILMS, V562, P612, DOI 10.1016/j.tsf.2014.04.045
  9. Biswas S, 2022, ANAL CHEM, V94, P3013, DOI 10.1021/acs.analchem.1c05538
  10. Black K, 2010, CHEM VAPOR DEPOS, V16, P106, DOI 10.1002/cvde.200906831
  11. Brodin P, 2021, NAT MED, V27, P28, DOI 10.1038/s41591-020-01202-8
  12. Inguanta R, 2013, J APPL ELECTROCHEM, V43, P199, DOI 10.1007/s10800-012-0514-1
  13. Israr MQ, 2010, THIN SOLID FILMS, V519, P1106, DOI 10.1016/j.tsf.2010.08.052
  14. Janardhanan JA, 2022, ANAL CHEM, V94, P7584, DOI 10.1021/acs.analchem.2c00497
  15. Jang Y, 2012, J NANOSCI NANOTECHNO, V12, P5173, DOI 10.1166/jnn.2012.6361
  16. Jara A, 2021, NEW ENGL J MED, V385, P875, DOI 10.1056/NEJMoa2107715
  17. Jiang M, 2022, ANAL CHIM ACTA, V1208, DOI 10.1016/j.aca.2022.339830
  18. Jindal K, 2012, BIOSENS BIOELECTRON, V38, P11, DOI 10.1016/j.bios.2012.03.043
  19. Karamese M, 2022, J MED VIROL, V94, P173, DOI 10.1002/jmv.27289
  20. Kehrer M, 2019, PLASMA PROCESS POLYM, V16, DOI 10.1002/ppap.201800160
  21. Klochko NP, 2019, SOL ENERGY, V184, P230, DOI 10.1016/j.solener.2019.04.002
  22. Martinez-Cuazitl A, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99529-w
  23. Koike K, 2014, JPN J APPL PHYS, V53, DOI 10.7567/JJAP.53.05FF04
  24. Kolodziejczak-Radzimska A, 2014, MATERIALS, V7, P2833, DOI 10.3390/ma7042833
  25. Kumar M., 2014, J MAT SCI ENG, V2, P18, DOI 10.12691/AJMSE-2-2-2
  26. Lalwani P, 2021, INT J INFECT DIS, V110, P141, DOI 10.1016/j.ijid.2021.07.017
  27. Layqah LA, 2019, MICROCHIM ACTA, V186, DOI 10.1007/s00604-019-3345-5
  28. Li JX, 2022, NAT MED, V28, P401, DOI 10.1038/s41591-021-01677-z
  29. Lister AS, 2005, SEP SCI TECHNOL-SER, V6, P191
  30. Liu AR, 2017, ANAL CHIM ACTA, V973, P82, DOI 10.1016/j.aca.2017.03.048
  31. Liu PP, 2021, ACS OMEGA, V6, P9667, DOI 10.1021/acsomega.1c00253
  32. Lombardi A, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.657711
  33. Martins BR, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12060657
  34. Mahshid SS, 2021, BIOSENS BIOELECTRON, V176, DOI 10.1016/j.bios.2020.112905
  35. MARUYAMA T, 1992, J MATER SCI LETT, V11, P170, DOI 10.1007/BF00724682
  36. McPeak KM, 2011, LANGMUIR, V27, P3672, DOI 10.1021/la105147u
  37. Medeiros GX, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.812126
  38. Mitra S, 2012, J MATER CHEM, V22, P24145, DOI 10.1039/c2jm35013k
  39. Molaakbari E, 2014, ANALYST, V139, P4356, DOI 10.1039/c4an00138a
  40. Mukaka MM, 2012, MALAWI MED J, V24, P69
  41. Mwankemwa B. S., 2022, RESULTS MATH, V14
  42. Palomera N, 2011, J NANOSCI NANOTECHNO, V11, P6683, DOI 10.1166/jnn.2011.4248
  43. Ridhuan NS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32127-5
  44. Parihar A, 2020, ACS APPL BIO MATER, V3, P7326, DOI 10.1021/acsabm.0c01083
  45. Park J, 2014, SENSOR ACTUAT B-CHEM, V200, P173, DOI 10.1016/j.snb.2014.03.001
  46. Patella B, 2022, MATERIALS, V15, DOI 10.3390/ma15030713
  47. Pewsner D, 2004, BMJ-BRIT MED J, V329, P209, DOI 10.1136/bmj.329.7459.209
  48. Phuruangrat A, 2021, OPTIK, V226, DOI 10.1016/j.ijleo.2020.165949
  49. Pollard AJ, 2021, NAT REV IMMUNOL, V21, P83, DOI 10.1038/s41577-020-00479-7
  50. Pramanik A, 2021, NANOSCALE ADV, V3, DOI 10.1039/d0na01007c
  51. Qi P, 2013, BIOSENS BIOELECTRON, V39, P282, DOI 10.1016/j.bios.2012.07.078
  52. Qu JX, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12040433
  53. Ravindran R, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254367
  54. Rodrigues J, 2020, APPL SURF SCI, V527, DOI 10.1016/j.apsusc.2020.146813
  55. da Silva SJR, 2020, ACS INFECT DIS, V6, P2319, DOI 10.1021/acsinfecdis.0c00274
  56. Rostami A, 2021, CLIN MICROBIOL INFEC, V27, P331, DOI 10.1016/j.cmi.2020.10.020
  57. Rushworth JV, 2014, BIOSENS BIOELECTRON, V56, P83, DOI 10.1016/j.bios.2013.12.036
  58. Saaedi A, 2016, PHYSICA E, V79, P113, DOI 10.1016/j.physe.2015.12.002
  59. Sbrockey NM, 2004, III-VS REV, V17, P23, DOI 10.1016/S0961-1290(04)00735-5
  60. Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864
  61. Sethuraman N, 2020, JAMA-J AM MED ASSOC, V323, P2249, DOI 10.1001/jama.2020.8259
  62. Seyahi E, 2021, RHEUMATOL INT, V41, P1429, DOI 10.1007/s00296-021-04910-7
  63. Shetti NP, 2019, BIOSENS BIOELECTRON, V141, DOI 10.1016/j.bios.2019.111417
  64. Viter R, 2014, IEEE SENS J, V14, P2028, DOI 10.1109/JSEN.2014.2309277
  65. Siddegowda KS, 2020, ELECTROANAL, V32, P2183, DOI 10.1002/elan.202000010
  66. Souza JS, 2016, J MATER CHEM A, V4, P944, DOI 10.1039/c5ta06646h
  67. Soysal A., 2021, HUM VACC IMMUNOTHER, P17
  68. Stamatatos L, 2021, SCIENCE, V372, P1413, DOI 10.1126/science.abg9175
  69. Tabatabaei MK, 2020, IET NANOBIOTECHNOL, V14, P126, DOI 10.1049/iet-nbt.2018.5165
  70. Tak M, 2014, BIOSENS BIOELECTRON, V59, P200, DOI 10.1016/j.bios.2014.03.036
  71. Tereshchenko A., 2017, BIOSENS BIOELECTRON, P92
  72. Trevethan R, 2017, FRONT PUBLIC HEALTH, V5, DOI 10.3389/fpubh.2017.00307
  73. Vabbina PK, 2015, BIOSENS BIOELECTRON, V63, P124, DOI 10.1016/j.bios.2014.07.026
  74. Vanaparthy Rachana, 2021, Infez Med, V29, P328, DOI 10.53854/liim-2903-3
  75. Wang CY, 2012, TALANTA, V94, P263, DOI 10.1016/j.talanta.2012.03.037
  76. Viter R, 2019, SENSOR ACTUAT B-CHEM, V285, P601, DOI 10.1016/j.snb.2019.01.054
  77. Wang J, 2006, ANAL ELECTROCHEMISTR
  78. Wang XM, 2021, J ELECTRON MATER, V50, P4954, DOI 10.1007/s11664-021-08958-w
  79. Wang ZJ, 2021, NATURE, V595, P426, DOI 10.1038/s41586-021-03696-9
  80. Wojnarowicz J, 2020, NANOMATERIALS-BASEL, V10, DOI 10.3390/nano10061086
  81. World Health Organization, WHO COR COVID 19 DAS
  82. Wright P F, 1993, Rev Sci Tech, V12, P435
  83. Wu M, 2022, LANCET, V399, P715, DOI 10.1016/S0140-6736(22)00092-7
  84. Wu ZW, 2017, SUPERLATTICE MICROST, V107, P38, DOI 10.1016/j.spmi.2017.04.016
  85. Cerqueira-Silva T, 2022, LANCET INFECT DIS, V22, P791, DOI 10.1016/S1473-3099(22)00140-2
  86. Yadav S, 2021, ACS APPL BIO MATER, V4, P2974, DOI 10.1021/acsabm.1c00102
  87. Yakoh A, 2021, BIOSENS BIOELECTRON, V176, DOI 10.1016/j.bios.2020.112912
  88. Yan XD, 2008, CRYST GROWTH DES, V8, P2406, DOI 10.1021/cg7012599
  89. Yang T, 2017, BIOSENS BIOELECTRON, V89, P538, DOI 10.1016/j.bios.2016.03.025
  90. Zhan FQ, 2018, ACS SUSTAIN CHEM ENG, V6, P7789, DOI 10.1021/acssuschemeng.8b00776
  91. Zhang ZH, 2021, BIOSENS BIOELECTRON, V181, DOI 10.1016/j.bios.2021.113134
  92. Zhao SJ, 2022, ACS SENSORS, V7, P1740, DOI 10.1021/acssensors.2c00518
  93. Zhu XL, 2007, BIOSENS BIOELECTRON, V22, P1600, DOI 10.1016/j.bios.2006.07.007
  94. Zia T. ul H., 2021, COLLOID SURFACE A, V630
  95. Zou KH, 2007, CIRCULATION, V115, P654, DOI 10.1161/CIRCULATIONAHA.105.594929
  96. Chang TH, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121342
  97. Zucolotto V., 2020, FRONT SENS, V3, DOI 10.3389/FSENS.2020.00003
  98. Chen YX, 2008, MATER LETT, V62, P2369, DOI 10.1016/j.matlet.2007.12.004
  99. Choi MS, 2021, CERAM INT, V47, P14621, DOI 10.1016/j.ceramint.2021.02.045
  100. Collie S, 2022, NEW ENGL J MED, V386, P494, DOI 10.1056/NEJMc2119270
  101. Dac Dien N., 2019, ADV MATER SCI, V4, P1, DOI 10.15761/AMS.1000147
  102. Dai ZH, 2009, BIOSENS BIOELECTRON, V24, P1286, DOI 10.1016/j.bios.2008.07.047
  103. Das J, 2010, PHYSICA B, V405, P2492, DOI 10.1016/j.physb.2010.03.020
  104. Das SK, 2012, GREEN CHEM, V14, P1322, DOI 10.1039/c2gc16676c
  105. de Almeida RM, 2020, CHEMPHYSCHEM, V21, P476, DOI 10.1002/cphc.201901171
  106. Ditte Kristina, 2021, ACS Biomater Sci Eng, DOI 10.1021/acsbiomaterials.1c00727
  107. Dong SY, 2017, SENSOR ACTUAT B-CHEM, V251, P650, DOI 10.1016/j.snb.2017.05.047
  108. Elgrishi N, 2018, J CHEM EDUC, V95, P197, DOI 10.1021/acs.jchemed.7b00361
  109. Ellmer K, 2000, J PHYS D APPL PHYS, V33, pR17, DOI 10.1088/0022-3727/33/4/201
  110. Ferrag C., 2020, FRONT SENS, V1, P583822, DOI [DOI 10.3389/FSENS.2020.583822, 10.3389/FSENS.2020.583822]
  111. Fortunato E, 2009, APPL PHYS A-MATER, V96, P197, DOI [10.1007/s00339-009-5086-5, 10.1007/s00339-009-50865]
  112. Frey A, 1998, J IMMUNOL METHODS, V221, P35, DOI 10.1016/S0022-1759(98)00170-7
  113. Funari R, 2020, BIOSENS BIOELECTRON, V169, DOI 10.1016/j.bios.2020.112578
  114. Gasparotto G, 2017, MAT SCI ENG C-MATER, V76, P1240, DOI 10.1016/j.msec.2017.02.031
  115. Hajian-Tilaki K, 2013, CASP J INTERN MED, V4, P627
  116. Hernandez-Paredes J, 2008, J MOL STRUCT, V875, P295, DOI 10.1016/j.molstruc.2007.04.039
  117. Hitchings MDT, 2021, LANCET REG HEALTH-AM, V1, DOI 10.1016/j.lana.2021.100025
  118. Hou XM, 2012, CRYSTENGCOMM, V14, P5158, DOI 10.1039/c2ce25188d
  119. Hsu YF, 2008, ADV FUNCT MATER, V18, P1020, DOI 10.1002/adfm.200701083
  120. Huang MH, 2001, SCIENCE, V292, P1897, DOI 10.1126/science.1060367
  121. Huang Y, 2020, ACTA PHARMACOL SIN, V41, P1141, DOI 10.1038/s41401-020-0485-4