Long-term respiratory follow-up of ICU hospitalized COVID-19 patients: Prospective cohort study

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.18, n.1, article ID e0280567, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundCoronavirus disease (COVID-19) survivors exhibit multisystemic alterations after hospitalization. Little is known about long-term imaging and pulmonary function of hospitalized patients intensive care unit (ICU) who survive COVID-19. We aimed to investigate long-term consequences of COVID-19 on the respiratory system of patients discharged from hospital ICU and identify risk factors associated with chest computed tomography (CT) lesion severity. MethodsA prospective cohort study of COVID-19 patients admitted to a tertiary hospital ICU in Brazil (March-August/2020), and followed-up six-twelve months after hospital admission. Initial assessment included: modified Medical Research Council dyspnea scale, SpO(2) evaluation, forced vital capacity, and chest X-Ray. Patients with alterations in at least one of these examinations were eligible for CT and pulmonary function tests (PFTs) approximately 16 months after hospital admission. Primary outcome: CT lesion severity (fibrotic-like or non-fibrotic-like). Baseline clinical variables were used to build a machine learning model (ML) to predict the severity of CT lesion. ResultsIn total, 326 patients (72%) were eligible for CT and PFTs. COVID-19 CT lesions were identified in 81.8% of patients, and half of them showed mild restrictive lung impairment and impaired lung diffusion capacity. Patients with COVID-19 CT findings were stratified into two categories of lesion severity: non-fibrotic-like (50.8%-ground-glass opacities/reticulations) and fibrotic-like (49.2%-traction bronchiectasis/architectural distortion). No association between CT feature severity and altered lung diffusion or functional restrictive/obstructive patterns was found. The ML detected that male sex, ICU and invasive mechanic ventilation (IMV) period, tracheostomy and vasoactive drug need during hospitalization were predictors of CT lesion severity(sensitivity,0.78 +/- 0.02;specificity,0.79 +/- 0.01;F1-score,0.78 +/- 0.02;positive predictive rate,0.78 +/- 0.02; accuracy,0.78 +/- 0.02; and area under the curve,0.83 +/- 0.01). ConclusionICU hospitalization due to COVID-19 led to respiratory system alterations six-twelve months after hospital admission. Male sex and critical disease acute phase, characterized by a longer ICU and IMV period, and need for tracheostomy and vasoactive drugs, were risk factors for severe CT lesions six-twelve months after hospital admission.
Palavras-chave
Referências
  1. Achkar M, 2022, ANN THORAC MED, V17, P137, DOI 10.4103/atm.atm_103_22
  2. Al-Aly Z, 2022, NAT MED, V28, P1461, DOI 10.1038/s41591-022-01840-0
  3. [Anonymous], 1991, AM REV RESPIR DIS, V144, P1202, DOI 10.1164/ajrccm/144.5.1202
  4. Aul R, 2021, RESP MED, V188, DOI 10.1016/j.rmed.2021.106602
  5. Bellan M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01215-4
  6. Bellan M, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2020.36142
  7. Busatto GF, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2021-051706
  8. d'Alessandro M, 2021, INTERN EMERG MED, V16, P1541, DOI 10.1007/s11739-020-02614-7
  9. Fabbri L, 2022, THORAX, DOI 10.1136/thoraxjnl-2021-218275
  10. Ferreira JC, 2021, ANN INTENSIVE CARE, V11, DOI 10.1186/s13613-021-00882-w
  11. Fortini A, 2022, INFECTION, V50, P513, DOI 10.1007/s15010-022-01755-5
  12. Frija-Masson J, 2021, RESP MED, V184, DOI 10.1016/j.rmed.2021.106435
  13. Han XY, 2021, RADIOLOGY, V301, pE438, DOI 10.1148/radiol.2021210972
  14. Han XY, 2021, RADIOLOGY, V299, pE177, DOI 10.1148/radiol.2021203153
  15. Herridge MS, 2003, NEW ENGL J MED, V348, P683, DOI 10.1056/NEJMoa022450
  16. Huang CL, 2021, LANCET, V397, P220, DOI 10.1016/S0140-6736(20)32656-8
  17. Huang YY, 2020, RESP RES, V21, DOI 10.1186/s12931-020-01429-6
  18. Hui DS, 2005, THORAX, V60, P401, DOI 10.1136/thx.2004.030205
  19. Keszler M, 2017, SEMIN FETAL NEONAT M, V22, P267, DOI 10.1016/j.siny.2017.06.003
  20. Ketai L, 2006, J THORAC IMAG, V21, P276, DOI 10.1097/01.rti.0000213581.14225.f1
  21. Liu CB, 2020, ANN AM THORAC SOC, V17, P1231, DOI 10.1513/AnnalsATS.202004-324OC
  22. Lopez-Leon S, 2021, SCI REP-UK, V11, DOI [10.1038/s41598-021-95565-8, 10.1101/2021.01.27.21250617]
  23. Luger AK, 2022, RADIOLOGY, V304, P462, DOI 10.1148/radiol.211670
  24. Madotto F, 2021, CRIT CARE, V25, DOI 10.1186/s13054-021-03465-0
  25. Nalbandian A, 2021, NAT MED, V27, P601, DOI 10.1038/s41591-021-01283-z
  26. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P729, DOI 10.1590/S0100-879X1999000600008
  27. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P703, DOI 10.1590/S0100-879X1999000600006
  28. Pereira Carlos Alberto de Castro, 2007, J. bras. pneumol., V33, P397, DOI 10.1590/S1806-37132007000400008
  29. Carvalho CRR, 2022, BMJ OPEN, V12, DOI 10.1136/bmjopen-2021-059110
  30. Siso-Almirall A, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18084350
  31. Tanni SE, 2021, EXPERT REV RESP MED, V15, P791, DOI 10.1080/17476348.2021.1916472
  32. Toufen C, 2011, CLINICS, V66, P933, DOI 10.1590/S1807-59322011000600002
  33. Toufen C, 2018, ANN INTENSIVE CARE, V8, DOI 10.1186/s13613-018-0469-4
  34. Wolfe KS, 2018, CHEST, V154, P781, DOI 10.1016/j.chest.2018.07.016
  35. World Health Organization (WHO), WHO COR DIS COVID 19
  36. Wu XJ, 2021, LANCET RESP MED, V9, P747, DOI 10.1016/S2213-2600(21)00174-0
  37. Xiong QT, 2021, CLIN MICROBIOL INFEC, V27, P89, DOI 10.1016/j.cmi.2020.09.023
  38. Zhang PX, 2020, BONE RES, V8, DOI 10.1038/s41413-020-0084-5