Transcranial direct current stimulation is safe and effective in autoimmune myopathies: a randomised, double-blind, sham-controlled trial

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CLINICAL & EXPER RHEUMATOLOGY
Citação
CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, v.41, n.2, p.221-229, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective We aimed to assess the safety and efficacy of transcranial direct current stimulation (tDCS) in patients with systemic autoimmune myopathies (SAMs).Methods This prospective, randomised, sham-controlled, double-blind, study included 20 patients with SAMs allocated to receive sham or active tDCS (2mA, 20 minutes, 3 days). Electrodes were positioned with the anode over the C1 or C2, whereas the cathode was placed over the Fp2 or Fp1, respectively. The groups were evaluated in four periods with specific questionnaires and functional tests: pre-stimulation and after 30 minutes, three weeks, and eight weeks post-tDCS.Results Two patients from the sham group withdrew after the three sessions. The demographic data, type of myositis, disease duration, and disease status were comparable between the active and sham tDCS groups. After interventions, in the active tDCS group, the physical aspects of SF-36 in week eight, mean and better timed up-and-go test at each evaluation, peak torque of stimulated inferior limb extension improved significantly (p<0.05). The emotional aspect of SF-36 decreased only in the active tDCS group (p<0.001). The patients' adherence to the protocol was 100% and no serious adverse event was reported, including disease relapses.Conclusion This study evidences the safety of tDCS, as well as its potential efficacy in improving muscle strength and function in SAMs patients. More studies with a larger sample and longer tDCS sessions are necessary to corroborate the results of the present study.
Palavras-chave
inflammatory myopathies, myositis, neuromodulation, safety, quality of life
Referências
  1. Allenbach Y, 2018, NEUROMUSCULAR DISORD, V28, P87, DOI 10.1016/j.nmd.2017.09.016
  2. [Anonymous], 2012, 10 20 SYSTEM POSITIO
  3. Atzeni F, 2011, BEST PRACT RES CL RH, V25, P165, DOI 10.1016/j.berh.2010.01.011
  4. Bikson M, 2016, BRAIN STIMUL, V9, P641, DOI 10.1016/j.brs.2016.06.004
  5. de Souza FHC, 2019, ADV RHEUMATOL, V59, DOI 10.1186/s42358-019-0048-x
  6. de Souza FHC, 2012, REV BRAS REUMATOL, V52, P892
  7. Carter MJ, 2017, BRAIN STIMUL, V10, P162, DOI 10.1016/j.brs.2016.11.002
  8. Cavagna L, 2019, J CLIN MED, V8, DOI 10.3390/jcm8112013
  9. Cavagna L, 2018, ANN RHEUM DIS, V77, DOI 10.1136/annrheumdis-2017-212368
  10. Ciconelli RM, 1999, REV BRAS REUMATOL, V39, P143, DOI 10.1590/S0482-50042010000300005
  11. Clark BC, 2021, J GERONTOL A-BIOL, V76, P1882, DOI 10.1093/gerona/glab098
  12. Clark BC, 2014, J NEUROPHYSIOL, V112, P3219, DOI 10.1152/jn.00386.2014
  13. de Oliveira DS, 2018, ADV RHEUMATOL, V58, DOI 10.1186/s42358-018-0004-1
  14. EKDAHL C, 1988, SCAND J RHEUMATOL, V17, P263, DOI 10.3109/03009748809098795
  15. Ferreira G, 2020, J DIABETES METAB DIS, V19, P327, DOI 10.1007/s40200-020-00513-4
  16. Gandiga PC, 2006, CLIN NEUROPHYSIOL, V117, P845, DOI 10.1016/j.clinph.2005.12.003
  17. Hadoush H, 2018, MED SCI MONIT BASIC, V24, P198, DOI 10.12659/MSMBR.911411
  18. Ilic NV, 2016, RESTOR NEUROL NEUROS, V34, P935, DOI 10.3233/RNN-160668
  19. Isenberg DA, 2004, RHEUMATOLOGY, V43, P49, DOI 10.1093/rheumatology/keg427
  20. Jales Junior Levi Higino, 2015, Rev. dor, V16, P37, DOI 10.5935/1806-0013.20150008
  21. Jones CJ, 1999, RES Q EXERCISE SPORT, V70, P113, DOI 10.1080/02701367.1999.10608028
  22. Katz P, 2017, CURR OPIN RHEUMATOL, V29, P269, DOI 10.1097/BOR.0000000000000376
  23. Lattari E, 2020, J STRENGTH COND RES, V34, P97, DOI 10.1519/JSC.0000000000001956
  24. Lefaucheur JP, 2019, NEUROPHYSIOL CLIN, V49, P269, DOI 10.1016/j.neucli.2019.07.013
  25. Lefaucheur JP, 2017, CLIN NEUROPHYSIOL, V128, P56, DOI 10.1016/j.clinph.2016.10.087
  26. Liu XY, 2019, BRAIN IMAGING BEHAV, V13, P1324, DOI 10.1007/s11682-018-9948-3
  27. Lundberg IE, 2017, ANN RHEUM DIS, V76, P1955, DOI 10.1136/annrheumdis-2017-211468
  28. Machado DGD, 2019, BRAIN STIMUL, V12, P593, DOI 10.1016/j.brs.2018.12.227
  29. Machado S, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01127
  30. Magalhaes Sales M, 2016, MED SPORT, V69, P163
  31. Matsudo S., 2001, REV BRAS ATIV FIS SA, V6, P5, DOI 10.12820/RBAFS.V.6N2P5-18
  32. McGrath ER, 2018, NEUROTHERAPEUTICS, V15, P976, DOI 10.1007/s13311-018-00676-2
  33. Mendonca ME, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00068
  34. Miller FW, 2001, RHEUMATOLOGY, V40, P1262, DOI 10.1093/rheumatology/40.11.1262
  35. MISSE RG, 2020, OPEN J RHEUMATOL AUT, V10, P88
  36. Mizuno T, 2017, NEUROSCI RES, V114, P55, DOI 10.1016/j.neures.2016.08.004
  37. Morya E, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0581-1
  38. Oddis CV, 2005, ARTHRITIS RHEUM, V52, P2607, DOI 10.1002/art.21291
  39. Orru G, 2020, REV NEUROSCIENCE, V31, P201, DOI 10.1515/revneuro-2019-0047
  40. Parma JO, 2021, J MOTOR BEHAV, V53, P431, DOI 10.1080/00222895.2020.1792823
  41. Pinto ACPN, 2021, BRAIN STIMUL, V14, P141, DOI 10.1016/j.brs.2020.12.004
  42. Pondal Margarita, 2008, J Geriatr Phys Ther, V31, P57
  43. RIDER LG, ARTHRITIS CARE RES H
  44. Rider LG, 2018, NAT REV RHEUMATOL, V14, P303, DOI 10.1038/nrrheum.2018.33
  45. Rocha K, 2020, PHYSIOL BEHAV, V224, DOI 10.1016/j.physbeh.2020.113036
  46. Souza Fernando Henrique Carlos de, 2011, Rev Bras Reumatol, V51, P428
  47. Staud R, 2012, CURR RHEUMATOL REP, V14, P539, DOI 10.1007/s11926-012-0277-z
  48. Tanaka S, 2011, NEUROREHAB NEURAL RE, V25, P565, DOI 10.1177/1545968311402091
  49. Workman CD, 2019, FRONT HUM NEUROSCI, V13, DOI 10.3389/fnhum.2019.00420