Multicenter Voxel-Based Morphometry Mega-Analysis of Structural Brain Scans in Obsessive-Compulsive Disorder

Nenhuma Miniatura disponível
Citações na Scopus
214
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PSYCHIATRIC PUBLISHING, INC
Autores
WIT, Stella J. de
ALONSO, Pino
SCHWEREN, Lizanne
MATAIX-COLS, David
LOCHNER, Christine
MENCHON, Jose M.
STEIN, Dan J.
FOUCHE, Jean-Paul
SORIANO-MAS, Caries
Citação
AMERICAN JOURNAL OF PSYCHIATRY, v.171, n.3, p.340-349, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Results from structural neuroimaging studies of obsessive-compulsive disorder (OCD) have been only partially consistent. The authors sought to assess regional gray and white matter volume differences between large samples of OCD patients and healthy comparison subjects and their relation with demographic and clinical variables. Method: A multicenter voxel-based morphometry mega-analysis was performed on 1.5-T str.uctural T-1-weighted MRI scans derived from the International OCD Brain Imaging Consortium. Regional gray and white matter brain volumes were compared between 412 adult OCD patients and 368 healthy subjects. Results: Relative to healthy comparison subjects, OCD patients had significantly smaller volumes of frontal gray and white matter bilaterally, including the dorsomedial prefrontal cortex, the anterior cingulate cortex, and the inferior frontal gyrus extending to the anterior insula. Patients also showed greater cerebellar gray matter volume bilaterally compared with healthy subjects. Group differences in frontal gray and white matter volume were significant after correction for multiple comparisons. Additionally, group-by-age interactions were observed in the putamen, insula, and orbitofrontal cortex (indicating relative preservation of volume in patients compared with healthy subjects with increasing age) and in the temporal cortex bilaterally (indicating a relative loss of volume in patients compared. with healthy subjects with increasing age). Conclusions: These findings partially support the prevailing fronto-striatal models of OCD and offer additional insights into the neuroanatomy of the disorder that were not apparent from previous smaller studies. The group-by-age interaction effects. in orbitofrontal-striatal and (para)limbic brain regions may be the result of altered neuroplasticity associated with chronic compulsive behaviors, anxiety, or compensatory processes related to cognitive dysfunction.
Palavras-chave
Referências
  1. Aoki Y, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.78
  2. Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
  3. Calder AJ, 2001, NAT REV NEUROSCI, V2, P352, DOI 10.1038/35072584
  4. Corbetta M, 2002, NAT REV NEUROSCI, V3, P201, DOI 10.1038/nrn755
  5. Critchley HD, 2004, NAT NEUROSCI, V7, P189, DOI 10.1038/nn1176
  6. de Wit SJ, 2012, AM J PSYCHIAT, V169, P1100, DOI 10.1176/appi.ajp.2012.12010073
  7. Frodl T, 2012, ACTA PSYCHIAT SCAND, V125, P114, DOI 10.1111/j.1600-0447.2011.01786.x
  8. Grieve SM, 2005, HUM BRAIN MAPP, V25, P391, DOI 10.1002/hbm.20115
  9. Harrison BJ, 2009, ARCH GEN PSYCHIAT, V66, P1189, DOI 10.1001/archgenpsychiatry.2009.152
  10. Hoexter MQ, 2012, NEUROPSYCHOPHARMACOL, V37, P734, DOI 10.1038/npp.2011.250
  11. Hoppenbrouwers SS, 2008, BRAIN RES REV, V59, P185, DOI 10.1016/j.brainresrev.2008.07.005
  12. Iervolino AC, 2011, ARCH GEN PSYCHIAT, V68, P637
  13. Johnston MV, 2009, DEV DISABIL RES REV, V15, P94, DOI 10.1002/ddrr.64
  14. Kassem MS, 2013, MOL NEUROBIOL, V47, P645, DOI 10.1007/s12035-012-8365-7
  15. Keuthen NJ, 2007, BIOL PSYCHIAT, V61, P374, DOI 10.1016/j.biopsych.2006.06.013
  16. Kim JJ, 2001, BRIT J PSYCHIAT, V179, P330, DOI 10.1192/bjp.179.4.330
  17. Mataix-Cols D, 2004, ARCH GEN PSYCHIAT, V61, P564, DOI 10.1001/archpsyc.61.6.564
  18. Menzies L, 2008, NEUROSCI BIOBEHAV R, V32, P525, DOI 10.1016/j.neubiorev.2007.09.005
  19. Middleton FA, 2000, BRAIN COGNITION, V42, P183, DOI 10.1006/brcg.1999.1099
  20. Paulus MP, 2010, BRAIN STRUCT FUNCT, V214, P451, DOI 10.1007/s00429-010-0258-9
  21. Peng Ziwen, 2012, Asian J Psychiatr, V5, P290, DOI 10.1016/j.ajp.2012.07.004
  22. Phelps EA, 2004, CURR OPIN NEUROBIOL, V14, P198, DOI 10.1016/j.conb.2004.03.015
  23. Pujol J, 2004, ARCH GEN PSYCHIAT, V61, P720, DOI 10.1001/archpsyc.61.7.720
  24. Radua J, 2009, BRIT J PSYCHIAT, V195, P393, DOI 10.1192/bjp.bp.108.055046
  25. Radua J, 2010, ARCH GEN PSYCHIAT, V67, P701, DOI 10.1001/archgenpsychiatry.2010.70
  26. Ridgway GR, 2009, NEUROIMAGE, V44, P99, DOI 10.1016/j.neuroimage.2008.08.045
  27. Riffkin J, 2005, PSYCHIAT RES-NEUROIM, V138, P99, DOI 10.1016/j.pscychresns.2004.11.007
  28. Rotge JY, 2010, NEUROPSYCHOPHARMACOL, V35, P686, DOI 10.1038/npp.2009.175
  29. Sabatinelli D, 2011, NEUROIMAGE, V54, P2524, DOI 10.1016/j.neuroimage.2010.10.011
  30. Salimi-Khorshidi G, 2009, NEUROIMAGE, V45, P810, DOI 10.1016/j.neuroimage.2008.12.039
  31. Schutter DJLG, 2005, CEREBELLUM, V4, P290, DOI 10.1080/14734220500348584
  32. Tobe RH, 2010, ANN NEUROL, V67, P479, DOI 10.1002/ana.21918
  33. Togao O, 2010, PSYCHIAT RES-NEUROIM, V184, P29, DOI 10.1016/j.pscychresns.2010.06.011
  34. Tops M, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00330
  35. van den Heuvel OA, 2009, BRAIN, V132, P853, DOI 10.1093/brain/awn267
  36. van Haren NEM, 2003, SCHIZOPHR RES, V64, P41, DOI 10.1016/S0920-9964(03)00018-5
  37. van Tol MJ, 2010, ARCH GEN PSYCHIAT, V67, P1002, DOI 10.1001/archgenpsychiatry.2010.121
  38. Volkow ND, 2011, P NATL ACAD SCI USA, V108, P15037, DOI 10.1073/pnas.1010654108
  39. Wittfoth M, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-17
  40. Worsley KJ, 1996, HUM BRAIN MAPP, V4, P58, DOI 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
  41. Yoo SY, 2008, J KOREAN MED SCI, V23, P24, DOI 10.3346/jkms.2008.23.1.24
  42. Ziegler G, 2012, HUM BRAIN MAPP, V33, P2377, DOI 10.1002/hbm.21374