[18F]FDG and [11C]PK11195 PET imaging in the evaluation of brown adipose tissue-effects of cold and pharmacological stimuli and their association with crotamine intake in a male mouse model

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
NUCLEAR MEDICINE AND BIOLOGY, v.122, article ID 108362, 7p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to evaluate the role of positron emission tomography (PET) with [11C]PK11195 and [18F]FDG in the characterization of brown adipose tissue (BAT). Methods: Male C57BL/6 mice were studied with the glucose analogue [18F]FDG (n = 21) and the TSPO mitochondrial tracer [11C]PK11195 (n = 28), without stimulus and after cold (6-9 degrees C) or beta-agonist (CL316243) stimuli. PET studies were performed at baseline and after 21 days of daily treatment with crotamine, which is a peptide described to induce adipocyte tissue browning and to increase BAT metabolism. Tracer uptake (SUVmax) was measured in the interscapular BAT and translocator protein 18 kDa (TSPO) expression was evaluated by immunohistochemistry. Results: The cold stimulus increased [18F]FDG uptake compared to no-stimulus (5.21 & PLUSMN; 1.05 vs. 2.03 & PLUSMN; 0.21, p < 0.0001) and to beta-agonist stimulus (2.65 & PLUSMN; 0.39, p = 0.0003). After 21 days of treatment with crotamine, there was no significant difference in the [18F]FDG uptake compared to the baseline in the no-stimulus group and in the cold-stimulus group, with a significant increase in uptake after CL stimulus (baseline: 2.65 & PLUSMN; 0.39; 21 days crotamine: 4.77 & PLUSMN; 0.81, p = 0.0003). Evaluation of [11C]PK11195 at baseline shows that CL stimulus increases the BAT uptake compared to no-stimulus (4.47 & PLUSMN; 0.66 vs. 3.36 & PLUSMN; 0.68, p = 0.014). After 21 days of treatment with crotamine, there was no significant difference in the [11C]PK11195 uptake compared to the baseline in the no-stimulus group (2.94 & PLUSMN; 0.58, p = 0.7864) and also after CL stimulus (3.55 & PLUSMN; 0.79, p = 0.085). TSPO expression correlated with [11C]PK11195 uptake (r = 0.83, p = 0.018) but not with [18F]FDG uptake (r = 0.40, p = 0.516). Conclusions: [11C]PK11195 allowed the identification of BAT under thermoneutral conditions or after beta3adrenergic stimulation in a direct correlation with TSPO expression. The beta-adrenergic stimulus, despite presenting a lower intensity of glycolytic activation compared to cold at baseline, allowed the observation of an increase in BAT uptake of [18F]FDG after 21 days of crotamine administration. Although some limitations were observed for the metabolic changes induced by crotamine, this study reinforced the potential of using [11C] PK11195 and/or [18F]FDG-PET to monitor the activation of BAT.
Palavras-chave
Positron emission tomography, Brown adipose tissue, Crotalid venoms, [18F]FDG, [11C]PK11195
Referências
  1. Betlazar C, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9020512
  2. Campeiro JD, 2018, AMINO ACIDS, V50, P267, DOI 10.1007/s00726-017-2513-3
  3. Campeiro JD, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-39842-7
  4. Cannon B, 2004, PHYSIOL REV, V84, P277, DOI 10.1152/physrev.00015.2003
  5. Casellas P, 2002, NEUROCHEM INT, V40, P475, DOI 10.1016/S0197-0186(01)00118-8
  6. Chen KY, 2016, CELL METAB, V24, P210, DOI 10.1016/j.cmet.2016.07.014
  7. Crandall JP, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214765
  8. Dal Mas C, 2017, BBA-BIOMEMBRANES, V1859, P2340, DOI 10.1016/j.bbamem.2017.09.006
  9. Dong M, 2018, FRONT MED-PRC, V12, P130, DOI 10.1007/s11684-017-0555-2
  10. Gent YYJ, 2014, ARTHRITIS RES THER, V16, DOI 10.1186/ar4509
  11. Gut P, 2013, NAT CHEM BIOL, V9, P97, DOI [10.1038/NCHEMBIO.1136, 10.1038/nchembio.1136]
  12. Hayashi MAF, 2022, TOXICON, V206, P1, DOI 10.1016/j.toxicon.2021.12.005
  13. Keijer J, 2019, MOL METAB, V25, P168, DOI 10.1016/j.molmet.2019.04.001
  14. Loening Andreas Markus, 2003, Mol Imaging, V2, P131, DOI 10.1162/153535003322556877
  15. Marinovic MP, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22988-1
  16. Medak KD, 2022, PHYSIOL REP, V10, DOI 10.14814/phy2.15187
  17. Mirbolooki MR, 2014, NUCL MED BIOL, V41, P10, DOI 10.1016/j.nucmedbio.2013.08.009
  18. Monfort-Pires M, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.919588
  19. Niu N, 2020, ADIPOCYTE, V9, P542, DOI 10.1080/21623945.2020.1814546
  20. Oh C, 2020, NUCL MED BIOL, V90-91, P98, DOI 10.1016/j.nucmedbio.2020.10.001
  21. Ohlson KBE, 2003, ANESTHESIOLOGY, V98, P437, DOI 10.1097/00000542-200302000-00025
  22. Olsen JM, 2019, MOL METAB, V30, P240, DOI 10.1016/j.molmet.2019.10.004
  23. Ong FJ, 2018, CLIN SCI, V132, P1039, DOI 10.1042/CS20170276
  24. Ran CZ, 2018, MOL IMAGING BIOL, V20, P188, DOI 10.1007/s11307-017-1129-z
  25. Steinberg JD, 2017, BRIT J RADIOL, V90, DOI 10.1259/bjr.20170093
  26. Thompson MM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079980
  27. Tu LN, 2016, ENDOCRINOLOGY, V157, P1110, DOI 10.1210/en.2015-1795
  28. Virtanen KA, 2009, NEW ENGL J MED, V360, P1518, DOI 10.1056/NEJMoa0808949
  29. Wang XK, 2012, JOVE-J VIS EXP, DOI 10.3791/4060
  30. Yang J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22179436