Economic analysis of antenatal screening for human T-cell lymphotropic virus type 1 in Brazil: an open access cost-utility model

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
ROSADAS, Carolina
SENNA, Katia
COSTA, Milene da
COOK, Lucy
CASTRO, Bernardo Galvao
GRASSI, Maria Fernanda Rios
Citação
LANCET GLOBAL HEALTH, v.11, n.5, p.E781-E790, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes severe diseases, such as aggressive cancer or progressive neurological disease. HTLV-1 affects mainly people in areas with low human development index and can be transmitted from mother to child, primarily through breastfeeding. Refraining from breastfeeding is an effective intervention to reduce the risk of infection in infants. However, HTLV-1 antenatal screening is not offered globally. According to WHO, the scarcity of cost-effectiveness studies is considered one of the major barriers to the implementation of policies to prevent HTLV-1 infection. Therefore, this study aimed to assess the cost-effectiveness of antenatal screening and postnatal interventions to prevent HTLV-1 mother-to-child transmission in Brazil and to develop an open-access, editable, mathematical model that can be used by other countries and regions to assess different scenarios. Methods In this cost-utility analysis, we constructed a decision tree and a Markov model to assess the cost-effectiveness of HTLV-1 antenatal screening and postnatal interventions (ie, avoidance of breastfeeding, by suppression of lactation with cabergoline, and provision of formula feed) to reduce transmission. For our model, we used data from Brazil and we took the perspective of the public health-care system to estimate costs. Findings The implementation of both screening and interventions would result in the prevention of 1039 infections in infants every year in Brazil with an incremental cost-effectiveness ratio (ICER) of US$11 415 per quality-adjusted lifeyear (QALY). 88% of all probabilistic sensitivity analysis simulations had ICER values lower than the Brazilian costeffectiveness threshold ($18 107 center dot 74 per QALY). HTLV-1 prevalence in pregnant women, the risk of HTLV-1 transmission when breastfeeding lasts for 6 months or more, and the cost of screening tests were the variables with the largest effect on ICER. Interpretation HTLV-1 antenatal screening is cost-effective in Brazil. An open-access model was developed, and this tool could be used to assess the cost-effectiveness of such policy globally, favouring the implementation of interventions to prevent HTLV-1 mother-to-child transmission worldwide.
Palavras-chave
Referências
  1. Arisawa K, 2000, INT J CANCER, V85, P319, DOI 10.1002/(SICI)1097-0215(20000201)85:3<319::AID-IJC4>3.0.CO;2-B
  2. Brito VD, 2018, J CLIN MICROBIOL, V56, DOI 10.1128/JCM.00961-18
  3. Campbell and Cochrane Economics Methods Group Evidence for Policy and Practice Information and Coordinating Centre, CCEMG EPPI CTR COST
  4. da Silva RX, 2020, REV INST MED TROP SP, V62, DOI [10.1590/S1678-9946202062027, 10.1590/s1678-9946202062027]
  5. Escuder MML, 2003, REV SAUDE PUBL, V37, P319, DOI 10.1590/S0034-89102003000300009
  6. Romanelli LCF, 2013, AIDS RES HUM RETROV, V29, P1199, DOI [10.1089/aid.2013.0086, 10.1089/AID.2013.0086]
  7. Haziot ME, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0006967
  8. Imaizumi Y, 2020, CANCER SCI, V111, P4567, DOI 10.1111/cas.14658
  9. Marcusso RMN, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9010025
  10. Ministerio da Saude do Brasil, 2021, B EP MORT INF BRAS
  11. Ministerio da Saude do Brasil, 2009, PESQ PREV AL MATR NA
  12. Ministerio da Saude do Brasil, 2022, PORT GM MS 715 4 ABR
  13. Ministerio da Saude do Brasil, 2016, APR PROT US ZID TRAT
  14. Ministerio da Saude do Brasil, 2021, GUIA MAN CLIN INF PE
  15. Ministerio da Saude do Brasil, 2022, US LIM CUST EF NAS D
  16. Ministerio da Saude do Brasil, TABNET DATASUS
  17. Nagasaka M, 2020, P NATL ACAD SCI USA, V117, P11685, DOI 10.1073/pnas.1920346117
  18. Pan American Health Organization, 2022, RESP HTLV FRAM MAT C
  19. Rosadas C, 2021, REV SOC BRAS MED TRO, V54, P0853
  20. Rosadas C, 2022, MICROORGANISMS, V10, DOI 10.3390/microorganisms10112227
  21. Rosadas C, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.883080
  22. Rosadas C, 2022, LANCET MICROBE, V3, pE164, DOI 10.1016/S2666-5247(21)00330-X
  23. Rosadas C, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.812016
  24. Rosadas C, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008761
  25. Rosadas C, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00999
  26. Rosadas C, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006913
  27. Santos M, 2021, HEALTH QUAL LIFE OUT, V19, DOI 10.1186/s12955-021-01671-6
  28. Schierhout G, 2020, LANCET INFECT DIS, V20, P133, DOI 10.1016/S1473-3099(19)30402-5
  29. Stein EM, 2018, HEALTH QUAL LIFE OUT, V16, DOI 10.1186/s12955-018-1013-9
  30. Takezaki Toshiro, 1997, Leukemia (Basingstoke), V11, P60
  31. Tosswill JHC, 2018, TRANSFUSION MED, V28, P326, DOI 10.1111/tme.12482
  32. Universidade Federal do Rio de Janeiro, 2021, AL MAT PREV PRAT ENT
  33. Vieira BA, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94934-7
  34. WHO, 2003, WHO TECH REP SER, V916, P1
  35. Ye LQ, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.832430