Neurophysiological Guidance for Movement Disorder Surgery

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Autores
PINHEIRO, D. S.
Citação
Pinheiro, D. S.; Fonoff, E.. Neurophysiological Guidance for Movement Disorder Surgery. In: . Intraoperative Monitoring: Neurophysiology and Surgical Approaches: SPRINGER INTERNATIONAL PUBLISHING, 2022. p.817-835.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The use of neurophysiological monitoring during surgical procedures has developed extensively in the past decade to become an important adjunctive technique to assist surgical teams and add more safety to surgical treatment approaches. In stereotactic and functional neurosurgery, the outcome results are intimately related to the target definition and adverse effect avoidance. In stereotactic-guided procedures, as in movement disorder surgery, the targets are deep seated in the brain. Therefore, the neurophysiological monitoring aims to avoid damage to the nervous tissue and participates in the decision-making of target localization, improving outcome. Stereotactic localization relies on perioperative imaging, frame-based patient’s head registration, and individual anatomical landmarks. Stereotactic-mounted probes are used for neuronal activity recording (microelectrode recording and local field potential), impedance monitoring, or controlled electrical stimulation to complement final target definition and correct positioning of the deep brain stimulation electrodes. This chapter covers the use of neurophysiological techniques used for movement disorder surgery. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.
Palavras-chave
Deep brain stimulation, Essential tremor, Internal globus pallidus, Local field potential, Microelectrode recording, Movement disorders, Neuronal activity, Parkinson’s disease, Subthalamic nucleus, Ventral intermediate nucleus
Referências
  1. Abosch A., Timmermann L., Bartley S., Et al., An international survey of deep brain stimulation procedural steps, Stereotact Funct Neurosurg, 91, pp. 1-11, (2013)
  2. Alexander G.E., Crutcher M.D., DeLong M.R., Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions, Prog Brain Res, 85, pp. 119-146, (1990)
  3. Alexander G.E., DeLong M.R., Strick P.L., Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu Rev Neurosci, 9, pp. 357-381, (1986)
  4. Alho E.J.L., Alho A.T.D.L., Grinberg L., Et al., High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy, Brain Struct Funct, 223, pp. 1121-1132, (2018)
  5. Alho E.J.L., Alho A.T.D.L., Horn A., Et al., The ansa subthalamica: A neglected fiber tract, Mov Disord, 35, pp. 75-80, (2020)
  6. Alho E.J.L., Fonoff E.T., Di Lorenzo Alho A.T., Et al., Use of computational fluid dynamics for 3D fiber tract visualization on human high-thickness histological slices: Histological mesh tractography, Brain Struct Funct, 226, pp. 323-333, (2021)
  7. Bejjani B.P., Dormont D., Pidoux B., Et al., Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance, J Neurosurg, 92, pp. 615-625, (2000)
  8. Benabid A.L., Koudsie A., Benazzouz A., Et al., Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy, J Neurol, 248, pp. 37-47, (2001)
  9. Benabid A.L., Krack P.P., Benazzouz A., Et al., Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: Methodologic aspects and clinical criteria, Neurology, 55, pp. S40-S44, (2000)
  10. Benazzouz A., Breit S., Koudsie A., Et al., Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease, Mov Disord, 17, pp. S145-S149, (2002)
  11. Bergman H., Wichmann T., Karmon B., DeLong M.R., The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J Neurophysiol, 72, pp. 507-520, (1994)
  12. Binder D.K., Rau G.M., Starr P.A., Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders, Neurosurgery, 56, pp. 722-732, (2005)
  13. Brown P., Bad oscillations in Parkinson’s disease, J Neural Transm Suppl, pp. 27-30, (2006)
  14. Brown P., Williams D., Basal ganglia local field potential activity: Character and functional significance in the human, Clin Neurophysiol, 116, pp. 2510-2519, (2005)
  15. Contreras Lopez W.O., Azevedo A.R., Cury R.G., Et al., Caudal zona incerta/VOP radiofrequency lesioning guided by combined stereotactic MRI and microelectrode recording for posttraumatic midbrain resting-kinetic tremor, World Neurosurg, 86, pp. 316-320, (2016)
  16. Obeso J.A., Olanow C.W., Et al., Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease, N Engl J Med, 345, pp. 956-963, (2001)
  17. Florence G., Sameshima K., Fonoff E.T., Hamani C., Deep brain stimulation: More complex than the inhibition of cells and excitation of fibers, Neuroscientist, 22, pp. 332-345, (2016)
  18. Fonoff E.T., Azevedo A., Angelos J.S.D., Et al., Simultaneous bilateral stereotactic procedure for deep brain stimulation implants: A significant step for reducing operation time, J Neurosurg, 125, pp. 85-89, (2016)
  19. Garonzik I.M., Hua S.E., Ohara S., Lenz F.A., Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate, Mov Disord, 17, pp. S135-S144, (2002)
  20. Ghilardi M.G.D.S., Ibarra M., Alho E.J.L., Et al., Double-target DBS for essential tremor: 8-contact lead for cZI and Vim aligned in the same trajectory, Neurology, 90, pp. 476-478, (2018)
  21. Gorgulho A., De Salles A.A.F., Frighetto L., Behnke E., Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery, J Neurosurg, 102, pp. 888-896, (2005)
  22. Gross R.E., Krack P., Rodriguez-Oroz M.C., Et al., Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor, Mov Disord, 21, pp. S259-S283, (2006)
  23. Hamani C., Florence G., Heinsen H., Et al., Subthalamic nucleus deep brain stimulation: Basic concepts and novel perspectives, eNeuro, 4, (2017)
  24. Hamani C., Saint-Cyr J.A., Fraser J., Et al., The subthalamic nucleus in the context of movement disorders, Brain, 127, pp. 4-20, (2004)
  25. Hutchison W.D., Allan R.J., Opitz H., Et al., Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease, Ann Neurol, 44, pp. 622-628, (1998)
  26. Hutchison W.D., Lozano A.M., Davis K.D., Et al., Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients, Neuroreport, 5, pp. 1533-1537, (1994)
  27. Kaneoke Y., Vitek J.L., Burst and oscillation as disparate neuronal properties, J Neurosci Methods, 68, pp. 211-223, (1996)
  28. Khan M.F., Mewes K., Gross R.E., Skrinjar O., Assessment of brain shift related to deep brain stimulation surgery, Stereotact Funct Neurosurg, 86, pp. 44-53, (2008)
  29. Kinfe T.M., Vesper J., The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia, Acta Neurochir Suppl, 117, pp. 27-33, (2013)
  30. Koeglsperger T., Palleis C., Hell F., Et al., Deep brain stimulation programming for movement disorders: Current concepts and evidence-based strategies, Front Neurol, (2019)
  31. Krack P., Fraix V., Mendes A., Et al., Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease, Mov Disord, 17, pp. S188-S197, (2002)
  32. Kuhn A.A., Tsui A., Aziz T., Et al., Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity, Exp Neurol, 215, pp. 380-387, (2009)
  33. Obeso J.A., Rodriguez-Oroz M.C., Rodriguez M., Et al., Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: Problems with the current model, Ann Neurol, 47, pp. S22-S32, (2000)
  34. Pollak P., Krack P., Fraix V., Et al., Intraoperative micro-and macrostimulation of the subthalamic nucleus in Parkinson’s disease, Mov Disord, 17, pp. S155-S161, (2002)
  35. Rezai A.R., Machado A.G., Deogaonkar M., Et al., Surgery for movement disorders, Neurosurgery, 62, pp. SHC809-SHC839, (2008)
  36. Rodriguez-Oroz M.C., Rodriguez M., Guridi J., Et al., The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics, Brain, 124, pp. 1777-1790, (2001)
  37. Sterio D., Zonenshayn M., Mogilner A.Y., Et al., Neurophysiological refinement of subthalamic nucleus targeting, Neurosurgery, 50, pp. 58-69, (2002)
  38. Vitek J.L., Pathophysiology of dystonia: A neuronal model, Mov Disord, 17, pp. S49-S62, (2002)
  39. Wichmann T., Bergman H., DeLong M.R., The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism, J Neurophysiol, 72, pp. 521-530, (1994)
  40. Zrinzo L., Foltynie T., Limousin P., Hariz M., Image-guided and image-verified deep brain stimulation, Mov Disord, 28, (2013)