Generation and validation of a classification model to diagnose familial hypercholesterolaemia in adults

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
ALBUQUERQUE, Joao
MEDEIROS, Ana Margarida
ALVES, Ana Catarina
MANCINA, Rosellina M.
PAVANELLO, Chiara
CHORA, Joana Rita
MOMBELLI, Giuliana
CALABRESI, Laura
Citação
ATHEROSCLEROSIS, v.383, article ID 117314, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and aims: The early diagnosis of familial hypercholesterolaemia is associated with a significant reduction in cardiovascular disease (CVD) risk. While the recent use of statistical and machine learning algorithms has shown promising results in comparison with traditional clinical criteria, when applied to screening of potential FH cases in large cohorts, most studies in this field are developed using a single cohort of patients, which may hamper the application of such algorithms to other populations. In the current study, a logistic regression (LR) based algorithm was developed combining observations from three different national FH cohorts, from Portugal, Brazil and Sweden. Independent samples from these cohorts were then used to test the model, as well as an external dataset from Italy.Methods: The area under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves was used to assess the discriminatory ability among the different samples. Comparisons between the LR model and Dutch Lipid Clinic Network (DLCN) clinical criteria were performed by means of McNemar tests, and by the calculation of several operating characteristics.Results: AUROC and AUPRC values were generally higher for all testing sets when compared to the training set. Compared with DLCN criteria, a significantly higher number of correctly classified observations were identified for the Brazilian (p < 0.01), Swedish (p < 0.01), and Italian testing sets (p < 0.01). Higher accuracy (Acc), G mean and F1 score values were also observed for all testing sets.Conclusions: Compared to DLCN criteria, the LR model revealed improved ability to correctly classify observations, and was able to retain a similar number of FH cases, with less false positive retention. Generalization of the LR model was very good across all testing samples, suggesting it can be an effective screening tool if applied to different populations.
Palavras-chave
Familial hypercholesterolaemia, Dutch lipid clinic network criteria, Logistic regression, Validation
Referências
  1. Abul-Husn NS, 2016, SCIENCE, V354, DOI 10.1126/science.aaf7000
  2. Akyea RK, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-00349-5
  3. Albuquerque J, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0269713
  4. Albuquerque J, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-05063-8
  5. Austin MA, 2004, AM J EPIDEMIOL, V160, P407, DOI 10.1093/aje/kwh236
  6. Banda JM, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0101-5
  7. Beheshti SO, 2020, J AM COLL CARDIOL, V75, P2553, DOI 10.1016/j.jacc.2020.03.057
  8. Benito-Vicente A, 2015, GENET MED, V17, P980, DOI 10.1038/gim.2015.14
  9. Benlian P, 2009, J PEDIATR GASTR NUTR, V48, P456, DOI 10.1097/MPG.0b013e3181810b30
  10. Besseling J, 2017, EUR HEART J, V38, P565, DOI 10.1093/eurheartj/ehw135
  11. Bouhairie VE, 2015, CARDIOL CLIN, V33, P169, DOI 10.1016/j.ccl.2015.01.001
  12. Branco P., 2015, ARXIV
  13. Chan DC, 2018, J CLIN ENDOCR METAB, V103, P1704, DOI 10.1210/jc.2017-02622
  14. Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
  15. Chora JR, 2022, GENET MED, V24, P293, DOI 10.1016/j.gim.2021.09.012
  16. Chora JR, 2018, GENET MED, V20, P591, DOI 10.1038/gim.2017.151
  17. Damgaard D, 2005, ATHEROSCLEROSIS, V180, P155, DOI 10.1016/j.atherosclerosis.2004.12.001
  18. Defesche JC, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.93
  19. Dhiman P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0081998
  20. Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010
  21. Hosmer DW, 2013, WILEY SER PROBAB ST, P1
  22. Hovingh GK, 2013, EUR HEART J, V34, P962, DOI 10.1093/eurheartj/eht015
  23. Knowles JW, 2017, JAMA-J AM MED ASSOC, V318, P381, DOI 10.1001/jama.2017.8543
  24. Maglio C, 2014, J INTERN MED, V276, P396, DOI 10.1111/joim.12263
  25. Medeiros AM, 2010, ATHEROSCLEROSIS, V212, P553, DOI 10.1016/j.atherosclerosis.2010.07.012
  26. Najam O, 2015, CARDIOL THER, V4, P25, DOI 10.1007/s40119-015-0037-z
  27. Niehaus KE, 2015, P DATA MINING MEDICA
  28. Nordestgaard BG, 2013, EUR HEART J, V34, P3478, DOI 10.1093/eurheartj/eht273
  29. Patel AP, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.3959
  30. Pina A, 2020, EUR J PREV CARDIOL, V27, P1639, DOI 10.1177/2047487319898951
  31. Pirillo A, 2017, ATHEROSCLEROSIS SUPP, V29, P17, DOI 10.1016/j.atherosclerosissup.2017.07.002
  32. Silva PRS, 2017, ATHEROSCLEROSIS, V263, P257, DOI 10.1016/j.atherosclerosis.2017.06.917
  33. Tharwat A., 2018, APPL COMPUTING INFOR
  34. Vallejo-Vaz AJ, 2018, ATHEROSCLEROSIS, V277, P289, DOI 10.1016/j.atherosclerosis.2018.06.855
  35. Weng S, 2019, LANCET PUBLIC HEALTH, V4, pE256, DOI 10.1016/S2468-2667(19)30061-1
  36. Weng SF, 2015, ATHEROSCLEROSIS, V238, P336, DOI 10.1016/j.atherosclerosis.2014.12.034