One health approach to toxocariasis in quilombola communities of southern Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SANTAREM, Vamilton Alvares
PANAZZOLO, Giovanni Kalempa
KMETIUK, Louise Bach
DOMINGUES, Orlei Jose
FERREIRA, Isabella Braghin
SOUZA FILHO, Roberto Teixeira de
FARINHAS, Joao Henrique
DOLINE, Fernando Rodrigo
BIONDO, Leandro Meneguelli
Citação
PARASITES & VECTORS, v.16, n.1, article ID 379, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Toxocariasis has been listed among the most neglected parasitic diseases worldwide, with approximately one fifth of the global population exposed, particularly those living under poverty. In Brazil, communities of descendants of enslaved blacks (quilombola) have historically had some of the highest rates of vulnerability and poverty, characterized by lack of health assistance, poor quality of life, and nutritional insecurity.Methods A cross-sectional sampling of quilombola individuals living in four communities of southern Brazil, as well as their dogs and the soil, was carried out from December 2021 to March 2022. Sociodemographic and other information such as water source, alimentary habits, and dog and cat ownership were gathered using a semi-structured questionnaire for assessing toxocariasis risk factors. Human serum samples were tested by ELISA for anti-Toxocara spp. IgG antibody detection was carried out on dog feces and hair, and soil samples were surveyed for presence of Toxocara spp. eggs.Results Overall, 172/208 individuals (82.7%, 95% CI = 77.0-87.2) were seropositive, the highest seroprevalence rate to date in Brazil. Male gender (P = 0.029), educational level (P = 0.026), and drinking water source (P = 0.043) were associated with seropositivity by univariate analysis. Final logistic regression revealed increased odds (P = 0.017, OR = 7.6, 95% CI = 1.5-42.7) to have seropositivity in individuals > 50 years old (< 10 years old). As expected, individuals with soil contact were more likely seropositive (P = 0.038, OR = 4.4, 95% CI = 1.1-18.8). Although retrieved in only 5/96 (5.2%) dog feces, Toxocara spp. eggs were found in 18/60 (30.0%) soil samples.Conclusions The high vulnerability and seroprevalence observed in quilombola communities clearly demand a One Health approach for detection, monitoring, and prevention of infection by Toxocara spp. in both human and dog populations.
Palavras-chave
Epidemiology, Poverty, Quilombo, Seroprevalence, Toxocara spp., Zoonosis
Referências
  1. Abuseir S, 2023, E MEDITERR HEALTH J, V29, P151, DOI 10.26719/emhj.23.016
  2. Adeel AA, 2020, ADV PARASIT, V109, P501, DOI 10.1016/bs.apar.2020.01.023
  3. Alves IR, 2020, Resiliencia espacial em comunidades quilombolas: desafios relacionados ao uso e ocupacao do solo em terras uso comum
  4. Araújo AC, 2018, REV INST MED TROP SP, V60, DOI [10.1590/s1678-9946201860028, 10.1590/S1678-9946201860028]
  5. Berrett AN, 2017, AM J TROP MED HYG, V97, P1846, DOI 10.4269/ajtmh.17-0542
  6. Campos MC, 2017, GEOSABERES, V8, P131, DOI 10.26895/geosaberes.v8i15.576
  7. CDC-Centers for Disease Control and Prevention, 2020, Parasites-Parasitic infections in the United States
  8. CDC-Centers for Disease Control and Prevention, 2022, Parasites-Soil-transmitted helminths
  9. Chou CM, 2020, ADV PARASIT, V109, P449, DOI 10.1016/bs.apar.2020.01.020
  10. Conde BE, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0238914
  11. Constantino DB, 2022, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.773969
  12. Cook J, 2016, TROP BIOMED, V33, P88
  13. de Azevedo P., 2021, PLoS Negl Trop Dis, V15, P1
  14. de Macedo LO, 2022, PARASITOL RES, V121, P3305, DOI 10.1007/s00436-022-07661-x
  15. Cherol CCD, 2021, PUBLIC HEALTH NUTR, V24, P3136, DOI 10.1017/S1368980020004164
  16. Delai RR, 2021, ONE HEALTH-AMSTERDAM, V13, DOI 10.1016/j.onehlt.2021.100353
  17. DESAVIGNY DH, 1979, J CLIN PATHOL, V32, P284, DOI 10.1136/jcp.32.3.284
  18. Despommier D, 2003, CLIN MICROBIOL REV, V16, P265, DOI 10.1128/CMR.16.2.265-272.2003
  19. Elefant GR, 2006, J CLIN LAB ANAL, V20, P164, DOI 10.1002/jcla.20126
  20. Farmer A, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005818
  21. Fernandes J, 2019, REV INST MED TROP SP, V61, DOI [10.1590/S1678-9946201961066, 10.1590/s1678-9946201961066]
  22. Fillaux J, 2013, VET PARASITOL, V193, P327, DOI 10.1016/j.vetpar.2012.12.028
  23. Merigueti YFFB, 2017, VET PARASITOL, V244, P39, DOI 10.1016/j.vetpar.2017.07.020
  24. GLICKMAN L, 1978, AM J TROP MED HYG, V27, P492, DOI 10.4269/ajtmh.1978.27.492
  25. Gubert MB, 2017, PUBLIC HEALTH NUTR, V20, P1513, DOI 10.1017/S1368980016003414
  26. Holland CV, 2017, PARASITOLOGY, V144, P81, DOI 10.1017/S0031182015001407
  27. Hotez PJ, 2020, ADV PARASIT, V109, P879, DOI 10.1016/bs.apar.2020.03.004
  28. IBGE, Indigenas
  29. Janssens ACJW, 2020, INT J EPIDEMIOL, V49, P1397, DOI 10.1093/ije/dyz274
  30. Kong Ling, 2020, Adv Parasitol, V109, P433, DOI 10.1016/bs.apar.2020.01.016
  31. Liu EW, 2018, CLIN INFECT DIS, V66, P206, DOI 10.1093/cid/cix784
  32. Lötsch F, 2016, PARASITOL INT, V65, P632, DOI 10.1016/j.parint.2016.09.001
  33. Ma GX, 2018, LANCET INFECT DIS, V18, pE14, DOI 10.1016/S1473-3099(17)30331-6
  34. Manitz J, 2021, samplingbook: Survey Sampling Procedures
  35. Fialho PMM, 2020, ADV PARASIT, V109, P357, DOI 10.1016/bs.apar.2020.01.013
  36. Fialho PMM, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4280792
  37. Fialho PMM, 2017, J TROP PEDIATRICS, V63, P352, DOI 10.1093/tropej/fmw094
  38. Mazur-Melewska K, 2020, ADV PARASIT, V109, P153, DOI 10.1016/bs.apar.2020.01.004
  39. Roldan JAM, 2023, PARASITE VECTOR, V16, DOI 10.1186/s13071-023-05670-y
  40. Merigueti YFFB, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.854468
  41. Na-Ek P, 2022, TROP MED HEALTH, V50, DOI 10.1186/s41182-022-00425-4
  42. Nahm FS, 2022, KOREAN J ANESTHESIOL, V75, P25, DOI 10.4097/kja.21209
  43. Naing L, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01694-7
  44. Otero D, 2018, J INFECT PUBLIC HEAL, V11, P94, DOI 10.1016/j.jiph.2017.05.002
  45. Panazzolo GK, 2023, TROP MED INFECT DIS, V8, DOI 10.3390/tropicalmed8070377
  46. Priori A, 2012, Historia do Parana: seculos XIX e XX
  47. Quaresma FRP, 2022, REV ASSOC MED BRAS, V68, P482, DOI 10.1590/1806-9282.20210994
  48. r-project, The R project for statistical computing
  49. Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77
  50. Roddie G, 2008, J HELMINTHOL, V82, P293, DOI 10.1017/S0022149X08996954
  51. Romasanta A, 2003, IMMUNOL INVEST, V32, P131, DOI 10.1081/IMM-120022974
  52. Xavier IGR, 2010, VET PARASITOL, V167, P77, DOI 10.1016/j.vetpar.2009.09.052
  53. Rostami A, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007809
  54. Rostami A, 2019, INFECT GENET EVOL, V74, DOI 10.1016/j.meegid.2019.104002
  55. Rubinsky-Elefant G, 2008, AM J TROP MED HYG, V79, P93, DOI 10.4269/ajtmh.2008.79.93
  56. Santarém VA, 2022, PARASITE VECTOR, V15, DOI 10.1186/s13071-022-05499-x
  57. Santarém VA, 2012, REV BRAS PARASITOL V, V21, P323, DOI 10.1590/S1984-29612012000300029
  58. Santos E. N. A., 2024, Braz. J. Biol., V84, pe246463, DOI 10.1590/1519-6984.246463
  59. Sardinha Ana Hélia de Lima, 2019, Rev. bras. geriatr. gerontol., V22, pe190011, DOI 10.1590/1981-22562019022.190011
  60. Schwartz R, 2022, PARASITE EPIDEM CONT, V16, DOI 10.1016/j.parepi.2021.e00232
  61. Song HB, 2020, KOREAN J PARASITOL, V58, P413, DOI 10.3347/kjp.2020.58.4.413
  62. Thorkildsen K, 2014, HUM ECOL, V42, P913, DOI 10.1007/s10745-014-9691-3
  63. Tiyo R, 2008, J HELMINTHOL, V82, P1, DOI 10.1017/S0022149X07870829
  64. Won EJ, 2015, ANN LAB MED, V35, P449, DOI 10.3343/alm.2015.35.4.449