Exercise training induces alteration of clock genes and myokines expression in tumor-bearing mice

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
TEIXEIRA, Alexandre Abilio de Souza
BIONDO, Luana
SILVEIRA, Loreana Sanches
LIMA, Edson A.
DINIZ, Tiego A.
LIRA, Fabio Santos
NETO, Jose Cesar Rosa
Citação
CELL BIOCHEMISTRY AND FUNCTION, v.41, n.8, p.1383-1394, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
To investigate the impact of different exercise training schedules (following a fixed schedule or at random times of the day) on clock genes and myokine expression patterns in the skeletal muscle of tumor-bearing mice. Mice were divided into three groups: tumor (LLC), tumor + exercise training (LLC + T) always performed at the same time of the day (ZT2) and exercise training at random times of the day (ZTAlt). Mice were inoculated subcutaneously with Lewis lung carcinoma cells. The gastrocnemius muscle was dissected and the clock gene expression (Clock/Per1/Per2/Per3/Rev-Erb alpha/GAPDH) was investigated by quantitative reverse transcription polymerase chain reaction with SYBR (R) Green. Myokine content in muscle (tumour necrosis factor alpha/IL-10/IL-4) was assessed by enzyme-linked immunosorbent assay. At the end of the protocol, the trained groups showed a reduction in total weight, when compared to Lewis lung carcinoma. Tumor weight was lower in the LLC + T (ZTAlt), when compared to LLC. Clock gene mRNA expression showed a significant increase for ZT20 in the groups that performed physical exercise at LLC + T (ZTAlt), when compared with LLC. The Per family showed increased mRNA expression in ZT4 in both trained mice groups, when compared with LLC. LLC + T (ZTAlt) presented reduction of the expression of anti-inflammatory myokines (Il-10/IL-4) during the night, compared with LLC + T(ZT2). Exercise training is able to induce marked modification of clock gene expression and of the production of myokines, in a way that is dependent on schedule exercise training strategy. Taken together, the results show that exercise is a potent Zeitgeber and may thus contribute to change clock genes expression and myokines that are able to reduce the tumor weight.
Palavras-chave
cancer, circadian rhythms, health, muscle, physical exercise
Referências
  1. Akashi M, 2005, NAT STRUCT MOL BIOL, V12, P441, DOI 10.1038/nsmb925
  2. Bedke T, 2019, SEMIN IMMUNOL, V44, DOI 10.1016/j.smim.2019.101335
  3. Chang AM, 2015, P NATL ACAD SCI USA, V112, P1232, DOI 10.1073/pnas.1418490112
  4. Chen ST, 2005, CARCINOGENESIS, V26, P1241, DOI 10.1093/carcin/bgi075
  5. Choi Y, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21093106
  6. Damiola F, 2000, GENE DEV, V14, P2950, DOI 10.1101/gad.183500
  7. Emmerich J, 2012, CANCER RES, V72, P3570, DOI 10.1158/0008-5472.CAN-12-0721
  8. Filipski E, 2002, J NATL CANCER I, V94, P690
  9. Gan Y, 2018, CARCINOGENESIS, V39, P87, DOI 10.1093/carcin/bgx129
  10. Gery S, 2006, MOL CELL, V22, P375, DOI 10.1016/j.molcel.2006.03.038
  11. Gery S, 2005, BLOOD, V106, P2827, DOI 10.1182/blood-2005-01-0358
  12. Guillaumond F, 2005, J BIOL RHYTHM, V20, P391, DOI 10.1177/0748730405277232
  13. Gupta NJ, 2019, NUTR METAB INSIGHTS, V12, DOI 10.1177/1178638819869024
  14. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  15. Hood S, 2017, J CLIN INVEST, V127, P437, DOI 10.1172/JCI90328
  16. Karsli-Uzunbas G, 2014, CANCER DISCOV, V4, P914, DOI 10.1158/2159-8290.CD-14-0363
  17. Kelleher FC, 2014, CANCER LETT, V342, P9, DOI 10.1016/j.canlet.2013.09.040
  18. Kettner NM, 2014, ANN MED, V46, P208, DOI 10.3109/07853890.2014.914808
  19. Kushi LH, 2012, CA-CANCER J CLIN, V62, P30, DOI 10.3322/caac.20140
  20. Lee Y, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000228
  21. Longo VD, 2016, CELL METAB, V23, P1048, DOI 10.1016/j.cmet.2016.06.001
  22. Masri S, 2015, CURR OPIN ONCOL, V27, P50, DOI 10.1097/CCO.0000000000000153
  23. de Assis LVM, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19041065
  24. Mumm JB, 2011, CANCER CELL, V20, P781, DOI 10.1016/j.ccr.2011.11.003
  25. Ostrin LA, 2019, CLIN EXP OPTOM, V102, P99, DOI 10.1111/cxo.12824
  26. Papagiannakopoulos T, 2016, CELL METAB, V24, P324, DOI 10.1016/j.cmet.2016.07.001
  27. Pot GK, 2018, P NUTR SOC, V77, P189, DOI 10.1017/S0029665117003974
  28. Preitner N, 2002, CELL, V110, P251, DOI 10.1016/S0092-8674(02)00825-5
  29. Reinke H, 2019, NAT REV MOL CELL BIO, V20, P227, DOI 10.1038/s41580-018-0096-9
  30. Ruiz-Casado A, 2017, TRENDS CANCER, V3, P423, DOI 10.1016/j.trecan.2017.04.007
  31. Rutter J, 2001, SCIENCE, V293, P510, DOI 10.1126/science.1060698
  32. Sahar S, 2007, CELL CYCLE, V6, P1329, DOI 10.4161/cc.6.11.4295
  33. Sahar S, 2009, NAT REV CANCER, V9, P886, DOI 10.1038/nrc2747
  34. Salamanca-Fernández E, 2018, AN SIST SANIT NAVAR, V41, P211, DOI [10.23938/ASSN.0307, 10.23938/assn.0307]
  35. Sato TK, 2004, NEURON, V43, P527, DOI 10.1016/j.neuron.2004.07.018
  36. Scheiermann C, 2018, NAT REV IMMUNOL, V18, P423, DOI 10.1038/s41577-018-0008-4
  37. Schernhammer ES, 2001, J NATL CANCER I, V93, P1563, DOI 10.1093/jnci/93.20.1563
  38. Schroeder AM, 2012, J PHYSIOL-LONDON, V590, P6213, DOI 10.1113/jphysiol.2012.233676
  39. Shalapour S, 2015, J CLIN INVEST, V125, P3347, DOI 10.1172/JCI80007
  40. Small L, 2020, J PHYSIOL-LONDON, V598, P5739, DOI 10.1113/JP280428
  41. Stokkan KA, 2001, SCIENCE, V291, P490, DOI 10.1126/science.291.5503.490
  42. Sulli G, 2019, TRENDS CANCER, V5, P475, DOI 10.1016/j.trecan.2019.07.002
  43. Sulli G, 2018, NATURE, V553, P351, DOI 10.1038/nature25170
  44. Sun ZJ, 2015, CANCER RES, V75, P1635, DOI 10.1158/0008-5472.CAN-14-3016
  45. Toledo M, 2018, CELL METAB, V28, P268, DOI 10.1016/j.cmet.2018.05.023
  46. Triqueneaux G, 2004, J MOL ENDOCRINOL, V33, P585, DOI 10.1677/jme.1.01554
  47. Walch OJ, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501705
  48. Wang XS, 2018, ONCOL LETT, V16, P1499, DOI 10.3892/ol.2018.8809
  49. Wang Y, 2016, CANCER DISCOV, V6, P1022, DOI 10.1158/2159-8290.CD-15-1412
  50. Wilke CM, 2011, CANCER IMMUNOL IMMUN, V60, P1529, DOI 10.1007/s00262-011-1104-5
  51. Wilking M, 2013, ANTIOXID REDOX SIGN, V19, P192, DOI 10.1089/ars.2012.4889
  52. Wolff G, 2012, MED SCI SPORT EXER, V44, P1663, DOI 10.1249/MSS.0b013e318255cf4c
  53. Wright KP, 2013, CURR BIOL, V23, P1554, DOI 10.1016/j.cub.2013.06.039
  54. Yamanaka Y, 2008, GENES CELLS, V13, P497, DOI 10.1111/j.1365-2443.2008.01183.x
  55. Yasumoto Y, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116476
  56. Ye YQ, 2018, CELL SYST, V6, P314, DOI 10.1016/j.cels.2018.01.013
  57. Yu H, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0056514, 10.1371/journal.pone.0080815]
  58. Yuan Li, 2018, Yichuan, V40, P1, DOI 10.16288/j.yczz.17-397