Enhanced immunogenicity and protective efficacy in mice following a Zika DNA vaccine designed by modulation of membrane-anchoring regions and its association to adjuvants

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN IMMUNOLOGY, v.15, article ID 1307546, 12p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_Delta STP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_Delta STP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-Delta STP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_Delta STP+Alum protected adult mice upon viral challenge. Collectively, the ZK_Delta STP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.
Palavras-chave
DNA vaccine, Zika virus, envelope protein, membrane-anchoring regions, adjuvants, protection, immunogenicity
Referências
  1. Abbink P, 2016, SCIENCE, V353, P1129, DOI 10.1126/science.aah6157
  2. Alam A, 2016, IMMUNOLOGY, V149, P386, DOI 10.1111/imm.12656
  3. Ashok MS, 2002, VACCINE, V20, P1563, DOI 10.1016/S0264-410X(01)00492-3
  4. Azevedo AS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020528
  5. de Araújo TVB, 2018, LANCET INFECT DIS, V18, P328, DOI 10.1016/S1473-3099(17)30727-2
  6. Bayer A, 2016, CELL HOST MICROBE, V19, P705, DOI 10.1016/j.chom.2016.03.008
  7. Braga C, 2023, PLOS NEGLECT TROP D, V17, DOI 10.1371/journal.pntd.0011270
  8. Castanha PMS, 2013, EPIDEMIOL INFECT, V141, P1080, DOI 10.1017/S0950268812001367
  9. Chen CH, 2000, VACCINE, V18, P2015, DOI 10.1016/S0264-410X(99)00528-9
  10. Costa SM, 2007, VIROLOGY, V358, P413, DOI 10.1016/j.virol.2006.08.052
  11. Costa SM, 2006, VACCINE, V24, P195, DOI 10.1016/j.vaccine.2005.07.059
  12. Crill WD, 2004, J VIROL, V78, P13975, DOI 10.1128/JVI.78.24.13975-13986.2004
  13. Dai LP, 2016, CELL HOST MICROBE, V19, P696, DOI 10.1016/j.chom.2016.04.013
  14. De Arruda LB, 2004, IMMUNOLOGY, V112, P126, DOI 10.1111/j.1365-2567.2004.01823.x
  15. Delogu G, 2002, INFECT IMMUN, V70, P292, DOI 10.1128/IAI.70.1.292-302.2002
  16. Dowd KA, 2016, SCIENCE, V354, P237, DOI 10.1126/science.aai9137
  17. Moreira MEL, 2018, NEW ENGL J MED, V379, P2377, DOI 10.1056/NEJMc1800098
  18. Firmino-Cruz L, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10081305
  19. Goldoni AL, 2011, IMMUNOBIOLOGY, V216, P505, DOI 10.1016/j.imbio.2010.08.007
  20. Hasan SS, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14722
  21. In HJ, 2020, VIROLOGY, V549, P25, DOI 10.1016/j.virol.2020.07.014
  22. Kabashima K, 2019, NAT REV IMMUNOL, V19, P19, DOI 10.1038/s41577-018-0084-5
  23. Kim W, 2022, NATURE, V604, P141, DOI 10.1038/s41586-022-04527-1
  24. Konishi E, 2003, VACCINE, V21, P3713, DOI 10.1016/S0264-410X(03)00376-1
  25. Kostyuchenko VA, 2016, NATURE, V533, P425, DOI 10.1038/nature17994
  26. Kou YM, 2017, IMMUNOL LETT, V190, P51, DOI 10.1016/j.imlet.2017.07.007
  27. Kuhn RJ, 2015, VIROLOGY, V479, P508, DOI 10.1016/j.virol.2015.03.025
  28. Kurup D, 2022, NPJ VACCINES, V7, DOI 10.1038/s41541-022-00464-2
  29. Kutzler MA, 2008, NAT REV GENET, V9, P776, DOI 10.1038/nrg2432
  30. Larocca RA, 2019, CELL HOST MICROBE, V26, P591, DOI 10.1016/j.chom.2019.10.001
  31. Larocca RA, 2016, NATURE, V536, P474, DOI 10.1038/nature18952
  32. Lee ACY, 2021, NPJ VACCINES, V6, DOI 10.1038/s41541-021-00359-8
  33. Leonhard SE, 2020, PLOS NEGLECT TROP D, V14, DOI 10.1371/journal.pntd.0008264
  34. Lopez-Camacho C, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04859-5
  35. Lu Y, 2003, VACCINE, V21, P2178, DOI 10.1016/S0264-410X(03)00009-4
  36. Luo MC, 2008, J VIROL METHODS, V154, P121, DOI 10.1016/j.jviromet.2008.08.011
  37. Maciel M, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003693
  38. Hurtado-Monzón AM, 2020, REV MED VIROL, V30, DOI 10.1002/rmv.2100
  39. Marques ETA, 2003, J BIOL CHEM, V278, P37926, DOI 10.1074/jbc.M303336200
  40. Medin CL, 2017, ARCH PATHOL LAB MED, V141, P33, DOI 10.5858/arpa.2016-0409-RA
  41. Medits I, 2020, EMBO REP, V21, DOI 10.15252/embr.202050069
  42. Miner JJ, 2017, CELL HOST MICROBE, V21, P134, DOI 10.1016/j.chom.2017.01.004
  43. Oehler E, 2014, EUROSURVEILLANCE, V19, P4
  44. Pardi N, 2017, NATURE, V543, P248, DOI 10.1038/nature21428
  45. Poland GA, 2018, LANCET INFECT DIS, V18, pE211, DOI 10.1016/S1473-3099(18)30063-X
  46. Pulendran B, 2021, NAT REV DRUG DISCOV, V20, P454, DOI 10.1038/s41573-021-00163-y
  47. Richner JM, 2017, CELL, V170, P273, DOI 10.1016/j.cell.2017.06.040
  48. Rigato PO, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031608
  49. Rigato PO, 2010, VIROLOGY, V406, P37, DOI 10.1016/j.virol.2010.06.050
  50. Sapparapu G, 2016, NATURE, V540, P443, DOI 10.1038/nature20564
  51. Smith SA, 2013, MBIO, V4, DOI 10.1128/mBio.00873-13
  52. Stiasny K, 2013, J VIROL, V87, P9933, DOI 10.1128/JVI.01283-13
  53. Tai WB, 2018, EMERG MICROBES INFEC, V7, DOI 10.1038/s41426-017-0007-8
  54. Tangye SG, 2009, EUR J IMMUNOL, V39, P2065, DOI 10.1002/eji.200939531
  55. Teixeira FME, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10081246
  56. Teixeira FME, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00175
  57. Viana IFT, 2023, MOL SYST DES ENG, V8, P516, DOI 10.1039/d2me00170e
  58. Victora GD, 2022, ANNU REV IMMUNOL, V40, P413, DOI 10.1146/annurev-immunol-120419-022408
  59. Wang JY, 2011, APPL MICROBIOL BIOT, V91, P731, DOI 10.1007/s00253-011-3297-0
  60. WU TC, 1995, P NATL ACAD SCI USA, V92, P11671, DOI 10.1073/pnas.92.25.11671
  61. Yadav N, 2021, MICROBES INFECT, V23, DOI 10.1016/j.micinf.2021.104843
  62. Yang CP, 2019, VIROL SIN, V34, P168, DOI 10.1007/s12250-019-00093-5
  63. Young C, 2021, IMMUNITY, V54, P1652, DOI 10.1016/j.immuni.2021.07.015
  64. Zehrung D, 2013, VACCINE, V31, P3392, DOI 10.1016/j.vaccine.2012.11.021
  65. Zhang Z, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.963049
  66. Zhu XL, 2018, ACTA NEUROPATHOL COM, V6, DOI 10.1186/s40478-018-0572-7