The Exometabolome of <i>Xylella fastidiosa</i> in Contact with <i>Paraburkholderia phytofirmans</i> Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
FEITOSA-JUNIOR, Oseias R.
LUBBE, Andrea
KOSINA, Suzanne M.
MARTINS-JUNIOR, Joaquim
BACCARI, Clelia
ZAINI, Paulo A.
BOWEN, Benjamin P.
NORTHEN, Trent R.
LINDOW, Steven E.
Citação
METABOLITES, v.14, n.2, article ID 82, 26p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Palavras-chave
Xylella fastidiosa, Paraburkholderia phytofirmans, metabolomics, phytopathogen, liquid chromatography-mass spectrometry, MAGI
Referências
  1. Aleksander SA, 2023, GENETICS, V224, DOI 10.1093/genetics/iyad031
  2. Ankrah NYD, 2020, J CHEM ECOL, V46, P735, DOI 10.1007/s10886-019-01136-7
  3. Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556
  4. Azevedo JL, 2016, GENET MOL BIOL, V39, P476, DOI [10.1590/1678-4685-GMB-2016-0056, 10.1590/1678-4685-gmb-2016-0056]
  5. Baccari C, 2019, PHYTOPATHOLOGY, V109, P248, DOI 10.1094/PHYTO-07-18-0245-FI
  6. Bansal P, 2022, NUCLEIC ACIDS RES, V50, pD693, DOI 10.1093/nar/gkab1016
  7. Bennett GM, 2015, P NATL ACAD SCI USA, V112, P10169, DOI 10.1073/pnas.1421388112
  8. Block A, 2008, CURR OPIN PLANT BIOL, V11, P396, DOI 10.1016/j.pbi.2008.06.007
  9. Bowen BP, 2010, J AM SOC MASS SPECTR, V21, P1471, DOI 10.1016/j.jasms.2010.04.003
  10. Cariddi C, 2014, J PLANT PATHOL, V96, P425
  11. Carr R, 2012, BIOINFORMATICS, V28, P734, DOI 10.1093/bioinformatics/btr721
  12. Caserta R, 2017, MOL PLANT MICROBE IN, V30, P866, DOI 10.1094/MPMI-07-17-0167-R
  13. Caspi R, 2020, NUCLEIC ACIDS RES, V48, pD445, DOI 10.1093/nar/gkz862
  14. Chatterjee S, 2008, ANNU REV PHYTOPATHOL, V46, P243, DOI 10.1146/annurev.phyto.45.062806.094342
  15. Chen XL, 2022, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.700200
  16. Daugherty MP, 2011, ECOL ENTOMOL, V36, P654, DOI 10.1111/j.1365-2311.2011.01309.x
  17. De La Fuente L, 2022, ANNU REV PHYTOPATHOL, V60, P163, DOI 10.1146/annurev-phyto-021021-041716
  18. De Silva NI, 2019, FUNGAL BIOL REV, V33, P133, DOI 10.1016/j.fbr.2018.10.001
  19. Delcher AL, 2002, NUCLEIC ACIDS RES, V30, P2478, DOI 10.1093/nar/30.11.2478
  20. Desprez-Loustau ML, 2021, FORESTRY, V94, P1, DOI 10.1093/forestry/cpaa029
  21. Douglas AE, 2017, CURR OPIN INSECT SCI, V23, P65, DOI 10.1016/j.cois.2017.07.012
  22. Drenos F, 2017, CURR OPIN LIPIDOL, V28, P99, DOI 10.1097/MOL.0000000000000393
  23. Erbilgin O, 2019, ACS CHEM BIOL, V14, P704, DOI 10.1021/acschembio.8b01107
  24. Feitosa OR, 2019, PHYTOPATHOLOGY, V109, P1344, DOI 10.1094/PHYTO-03-19-0083-R
  25. FLYNN KJ, 1989, J PLANKTON RES, V11, P165, DOI 10.1093/plankt/11.1.165
  26. FROMMEL MI, 1991, PLANT PHYSIOL, V96, P928, DOI 10.1104/pp.96.3.928
  27. Gotz S, 2008, NUCLEIC ACIDS RES, V36, P3420, DOI 10.1093/nar/gkn176
  28. GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639
  29. Grigoriev IV, 2012, NUCLEIC ACIDS RES, V40, pD26, DOI 10.1093/nar/gkr947
  30. Hibi M, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-020-01555-3
  31. Huang WJ, 2020, MOL PLANT, V13, P1379, DOI 10.1016/j.molp.2020.08.010
  32. Ionescu M, 2016, MBIO, V7, DOI 10.1128/mBio.01054-16
  33. Ionescu M, 2014, P NATL ACAD SCI USA, V111, pE3910, DOI 10.1073/pnas.1414944111
  34. Jacoby RP, 2018, MOL PLANT MICROBE IN, V31, P803, DOI [10.1094/MPMI-10-17-0253-R, 10.1094/mpmi-10-17-0253-r]
  35. Joo GJ, 2009, J MICROBIOL, V47, P167, DOI 10.1007/s12275-008-0273-1
  36. Kim S, 2023, NUCLEIC ACIDS RES, V51, pD1373, DOI 10.1093/nar/gkac956
  37. KING EO, 1954, J LAB CLIN MED, V44, P301
  38. Kosina SM, 2016, ACS SYNTH BIOL, V5, P569, DOI 10.1021/acssynbio.5b00236
  39. Kreimer A, 2012, BIOINFORMATICS, V28, P2195, DOI 10.1093/bioinformatics/bts323
  40. Krugner R, 2019, AUSTRAL ENTOMOL, V58, P248, DOI 10.1111/aen.12397
  41. Kvitko BH, 2023, PHYTOPATHOLOGY, V113, P626, DOI 10.1094/PHYTO-08-22-0292-KD
  42. Lawson CE, 2019, NAT REV MICROBIOL, V17, P725, DOI 10.1038/s41579-019-0255-9
  43. Levy R, 2013, P NATL ACAD SCI USA, V110, P12804, DOI 10.1073/pnas.1300926110
  44. Levy R, 2012, ADV EXP MED BIOL, V751, P329, DOI 10.1007/978-1-4614-3567-9_15
  45. Lindow S, 2024, PHYTOPATHOLOGY, DOI 10.1094/PHYTO-06-23-0219-R
  46. Liu R, 2021, MOLECULES, V26, DOI 10.3390/molecules26113311
  47. Lu X, 2015, NEW PHYTOL, V206, P295, DOI 10.1111/nph.13187
  48. Merkel D, 2014, Linux J, V2014, P2
  49. Michelini S, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0545-x
  50. Miotto-Vilanova L, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01236
  51. Mitter B, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00120
  52. Moll L, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.753874
  53. Morris CE, 2019, ANNU REV PHYTOPATHOL, V57, P63, DOI 10.1146/annurev-phyto-082718-100034
  54. Nagel R, 2017, NEW PHYTOL, V214, P1260, DOI 10.1111/nph.14441
  55. Nascimento R, 2016, SCI REP-UK, V6, DOI 10.1038/srep18598
  56. Nett RS, 2017, NAT CHEM BIOL, V13, P69, DOI [10.1038/NCHEMBIO.2232, 10.1038/nchembio.2232]
  57. Newman KL, 2004, P NATL ACAD SCI USA, V101, P1737, DOI 10.1073/pnas.0308399100
  58. Newman KL, 2003, APPL ENVIRON MICROB, V69, P7319, DOI 10.1128/AEM.69.12.7319-7327.2003
  59. Novelli S, 2019, J PLANT RES, V132, P439, DOI 10.1007/s10265-019-01108-8
  60. Obata K, 2013, P JPN ACAD B-PHYS, V89, P139, DOI 10.2183/pjab.89.139
  61. Pajot E, 2001, EUR J PLANT PATHOL, V107, P861, DOI 10.1023/A:1013136608965
  62. Parniske M, 2018, CURR OPIN PLANT BIOL, V44, P164, DOI 10.1016/j.pbi.2018.05.016
  63. PHINNEY BO, 1956, P NATL ACAD SCI USA, V42, P185, DOI 10.1073/pnas.42.4.185
  64. Rapicavoli J, 2018, MOL PLANT PATHOL, V19, P786, DOI 10.1111/mpp.12585
  65. Roper C, 2019, CURR OPIN PLANT BIOL, V50, P140, DOI 10.1016/j.pbi.2019.05.005
  66. Roper MC, 2007, MOL PLANT MICROBE IN, V20, P411, DOI 10.1094/MPMI-20-4-0411
  67. Ryffel F, 2016, ISME J, V10, P632, DOI 10.1038/ismej.2015.141
  68. Salazar-Cerezo S, 2018, MICROBIOL RES, V208, P85, DOI 10.1016/j.micres.2018.01.010
  69. Saldanha LL, 2022, J AGR FOOD CHEM, DOI 10.1021/acs.jafc.2c05156
  70. Saponari M, 2014, J ECON ENTOMOL, V107, P1316, DOI 10.1603/EC14142
  71. Sasek V, 2012, EUR J PLANT PATHOL, V133, P279, DOI 10.1007/s10658-011-9897-9
  72. Sawana A, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00429
  73. Sessitsch A, 2005, INT J SYST EVOL MICR, V55, P1187, DOI 10.1099/ijs.0.63149-0
  74. Sicard A, 2018, ANNU REV PHYTOPATHOL, V56, P181, DOI 10.1146/annurev-phyto-080417-045849
  75. Smolka MB, 2003, PROTEOMICS, V3, P224, DOI 10.1002/pmic.200390031
  76. Sue T, 2011, APPL ENVIRON MICROB, V77, P7605, DOI 10.1128/AEM.00469-11
  77. Sumner LW, 2007, METABOLOMICS, V3, P211, DOI 10.1007/s11306-007-0082-2
  78. Tudzynski B, 2005, APPL MICROBIOL BIOT, V66, P597, DOI 10.1007/s00253-004-1805-1
  79. Urbanová T, 2011, COLLECT CZECH CHEM C, V76, P1669, DOI 10.1135/cccc2011098
  80. van Hoogstraten SWG, 2023, CRIT REV MICROBIOL, DOI 10.1080/1040841X.2023.2223704
  81. Van Sluys MA, 2002, ANNU REV PHYTOPATHOL, V40, P169, DOI 10.1146/annurev.phyto.40.030402.090559
  82. Verbeeck N, 2020, MASS SPECTROM REV, V39, P245, DOI 10.1002/mas.21602
  83. Vergine M, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9090675
  84. Villas-Bôas SG, 2006, ANAL BIOCHEM, V349, P297, DOI 10.1016/j.ab.2005.11.019
  85. Villas-Boas SG, 2005, MASS SPECTROM REV, V24, P613, DOI 10.1002/mas.20032
  86. Wang H, 2015, CHEM CENT J, V9, DOI 10.1186/s13065-015-0124-1
  87. Wang N, 2012, PHYTOPATHOLOGY, V102, P1045, DOI 10.1094/PHYTO-07-12-0146-R
  88. Weilharter A, 2011, J BACTERIOL, V193, P3383, DOI 10.1128/JB.05055-11
  89. Yang J, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.913349
  90. Yao YS, 2015, METABOLITES, V5, P431, DOI 10.3390/metabo5030431
  91. Zaini PA, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00771