ENVIRONMENTAL TOBACCO SMOKE INDUCES OXIDATIVE STRESS IN DISTINCT BRAIN REGIONS OF INFANT MICE

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS INC
Autores
TORRES, Larissa Helena Lobo
MOREIRA, Wallace Luiz
GARCIA, Raphael Caio Tamborelli
TEIXEIRA, Simone Aparecida
MUSCARA, Marcelo Nicolas
CAMARINI, Rosana
LOUREIRO, Ana Paula de Melo
Citação
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, v.75, n.16-17, Special Issue, p.971-980, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Palavras-chave
Referências
  1. Alberg AJ, 2002, TOXICOLOGY, V180, P121, DOI 10.1016/S0300-483X(02)00386-4
  2. Anbarasi K, 2006, NEUROSCIENCE, V138, P1127, DOI 10.1016/j.neuroscience.2005.11.029
  3. Anbarasi K, 2006, LIFE SCI, V78, P1378, DOI 10.1016/j.lfs.2005.07.030
  4. Bao F, 2002, NEUROSCIENCE, V115, P839, DOI 10.1016/S0306-4522(02)00506-7
  5. Baskaran S., 1999, Indian Journal of Experimental Biology, V37, P1196
  6. BECKMAN JS, 1994, PROG BRAIN RES, V103, P371
  7. Oberg M, 2011, LANCET, V377, P139, DOI 10.1016/S0140-6736(10)61388-8
  8. BEUTLER E, 1984, CLIN CHEM, V30, P871
  9. Bhalla DK, 2009, J TOXICOL ENV HEAL B, V12, P45, DOI 10.1080/10937400802545094
  10. Blomgren K, 2006, FREE RADICAL BIO MED, V40, P388, DOI 10.1016/j.freeradbiomed.2005.08.040
  11. Burke AS, 2007, J TOXICOL ENV HEAL A, V70, P1936, DOI 10.1080/15287390701551399
  12. Butterfield DA, 2001, TRENDS MOL MED, V7, P548, DOI 10.1016/S1471-4914(01)02173-6
  13. CARLBERG I, 1975, J BIOL CHEM, V250, P5475
  14. CHURCH DF, 1985, ENVIRON HEALTH PERSP, V64, P111, DOI 10.2307/3430003
  15. Comhair SAA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018574
  16. Delibas N, 2003, CELL BIOCHEM FUNCT, V21, P69, DOI 10.1002/cbf.990
  17. Ditelberg JS, 1996, PEDIATR RES, V39, P204, DOI 10.1203/00006450-199602000-00003
  18. Eisner Mark D, 2005, Environ Health, V4, P7, DOI 10.1186/1476-069X-4-7
  19. FLOHE L, 1984, METHOD ENZYMOL, V105, P114
  20. Floyd RA, 1999, P SOC EXP BIOL MED, V222, P236, DOI 10.1046/j.1525-1373.1999.d01-140.x
  21. Fuller BF, 2010, J MOL NEUROSCI, V41, P165, DOI 10.1007/s12031-009-9316-2
  22. HABIG WH, 1974, J BIOL CHEM, V249, P7130
  23. Mamelak M, 2007, NEUROBIOL AGING, V28, P1340, DOI 10.1016/j.neurobiolaging.2006.06.008
  24. Man CN, 2006, J CHROMATOGR B, V844, P322, DOI 10.1016/j.jchromb.2006.07.029
  25. Manna SK, 2006, BIOCHEM PHARMACOL, V71, P1602, DOI 10.1016/j.bcp.2006.02.014
  26. Manzo ND, 2010, J TOXICOL ENV HEAL A, V73, P565, DOI 10.1080/15287390903566625
  27. Markesbery WR, 1999, ARCH NEUROL-CHICAGO, V56, P1449, DOI 10.1001/archneur.56.12.1449
  28. Musso F, 2007, PSYCHOPHARMACOLOGY, V191, P159, DOI 10.1007/s00213-006-0499-8
  29. Rice D, 2000, ENVIRON HEALTH PERSP, V108, P511, DOI 10.2307/3454543
  30. Sexton K, 2011, J TOXICOL ENV HEAL A, V74, P927, DOI 10.1080/15287394.2011.573745
  31. Sim AS, 2003, J CHROMATOGR B, V785, P337, DOI 10.1016/S1570-0232(02)00956-X
  32. SLIVKA A, 1987, BRAIN RES, V409, P275, DOI 10.1016/0006-8993(87)90712-8
  33. Slotkin TA, 2006, ENVIRON HEALTH PERSP, V114, P34, DOI 10.1289/ehp.8286
  34. Sobczak A, 2004, TOXICOL LETT, V151, P429, DOI 10.1016/j.toxlet.2004.03.010
  35. Stangherlin EC, 2009, INHAL TOXICOL, V21, P868, DOI 10.1080/08958370802526881
  36. van Hoorn EC, 2003, ANAL BIOCHEM, V320, P82, DOI 10.1016/S0003-2697(03)00292-6
  37. YANG GY, 1994, STROKE, V25, P165
  38. Zhang R, 2010, J TOXICOL ENV HEAL A, V73, P1477, DOI 10.1080/15287394.2010.511564