Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect

Carregando...
Imagem de Miniatura
Citações na Scopus
32
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
HYPERTENSION, v.67, n.3, p.613-622, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (approximate to 25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of 1-integrin, and levels of reduced cell-surface 1-integrin, were diminished after PDI antibody treatment, implicating 1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream 1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to counteract inward remodeling in vascular pathophysiology.
Palavras-chave
cytoskeleton, endoplasmic reticulum, hydrogen peroxide, protein disulfide isomerase, vascular remodeling
Referências
  1. Essex DW, 2009, ANTIOXID REDOX SIGN, V11, P1191, DOI 10.1089/ARS.2008.2322
  2. Azevedo LCP, 2000, CARDIOVASC RES, V47, P436, DOI 10.1016/S0008-6363(00)00091-2
  3. Deguchi JO, 2009, LAB INVEST, V89, P315, DOI 10.1038/labinvest.2008.167
  4. Eble JA, 2014, ANTIOXID REDOX SIGN, V20, P1977, DOI 10.1089/ars.2013.5294
  5. Eletto D, 2014, J CELL SCI, V127, P3649, DOI 10.1242/jcs.153643
  6. Mulvany MJ, 2012, BASIC CLIN PHARMACOL, V110, P49, DOI 10.1111/j.1742-7843.2011.00758.x
  7. Bi SG, 2011, P NATL ACAD SCI USA, V108, P10650, DOI 10.1073/pnas.1017954108
  8. Wan SW, 2012, J CELL BIOCHEM, V113, P1681, DOI 10.1002/jcb.24037
  9. SAREMBOCK IJ, 1989, CIRCULATION, V80, P1029
  10. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  11. Rudic RD, 1998, J CLIN INVEST, V101, P731, DOI 10.1172/JCI1699
  12. Burgoyne JR, 2007, SCIENCE, V317, P1393, DOI 10.1126/science.1144318
  13. Lehoux S, 2006, CARDIOVASC RES, V71, P269, DOI 10.1016/j.cardiores.2006.05.008
  14. Cho J, 2008, J CLIN INVEST, V118, P1123, DOI 10.1172/JCI34134
  15. Schoenhagen P, 2006, CIRCULATION, V113, P2826, DOI 10.1161/CIRCULATIONAHA.105.585703
  16. Cai H, 2001, ARTERIOSCL THROM VAS, V21, P1571, DOI 10.1161/hq1001.097028
  17. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  18. Lafont A, 1999, CIRCULATION, V100, P1109
  19. Muller C, 2013, ANTIOXID REDOX SIGN, V18, P731, DOI 10.1089/ars.2012.4577
  20. Swiatkowska M, 2010, J BIOL CHEM, V285, P29874, DOI 10.1074/jbc.M109.092486
  21. Furlan-Freguia C, 2011, J CLIN INVEST, V121, P2932, DOI 10.1172/JCI46129
  22. Tian F, 2009, AM J PHYSIOL-HEART C, V297, pH1078, DOI 10.1152/ajpheart.00937.2008
  23. Taylor AJ, 1999, J AM COLL CARDIOL, V34, P760, DOI 10.1016/S0735-1097(99)00275-2
  24. Furie B, 2014, CIRC RES, V114, P1162, DOI 10.1161/CIRCRESAHA.114.301808
  25. Willems SH, 2010, BIOCHEM J, V428, P439, DOI 10.1042/BJ20100179
  26. Leite PF, 2003, ARTERIOSCL THROM VAS, V23, P2197, DOI 10.1161/01.ATV.0000093980.46838.41
  27. Hatahet F, 2009, ANTIOXID REDOX SIGN, V11, P2807, DOI 10.1089/ARS.2009.2466
  28. Stanic B, 2010, ARTERIOSCL THROM VAS, V30, P2234, DOI 10.1161/ATVBAHA.110.207639
  29. LANGILLE BL, 1986, SCIENCE, V231, P405, DOI 10.1126/science.3941904
  30. Laurindo FRM, 2014, ANTIOXID REDOX SIGN, V20, P2755, DOI 10.1089/ars.2013.5605
  31. Swiatkowska M, 2008, FEBS J, V275, P1813, DOI 10.1111/j.1742-4658.2008.06339.x
  32. Pasterkamp G, 2000, CARDIOVASC RES, V45, P843, DOI 10.1016/S0008-6363(99)00377-6
  33. Kim K, 2013, BLOOD, V122, P1052, DOI 10.1182/blood-2013-03-492504
  34. Hahm E, 2013, BLOOD, V121, P3789, DOI 10.1182/blood-2012-11-467985
  35. Sobierajska K, 2014, J BIOL CHEM, V289, P5758, DOI 10.1074/jbc.M113.479477
  36. Cote G, 1999, CIRCULATION, V99, P30
  37. Maiellaro-Rafferty K, 2011, AM J PHYSIOL-HEART C, V301, pH355, DOI 10.1152/ajpheart.00040.2011