A comparative study of extracellular matrix remodeling in two murine models of emphysema

Carregando...
Imagem de Miniatura
Citações na Scopus
25
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
F HERNANDEZ
Citação
HISTOLOGY AND HISTOPATHOLOGY, v.28, n.2, p.269-276, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
A single instillation of porcine pancreatic elastase (PPE) results in significant airspace enlargement on the 28th day after instillation, whereas cigarette smoke (CS) exposure requires 6 months to produce mild emphysema in rodents. Considering that there are differences in the pathogenesis of parenchymal destruction in these different experimental models, it is likely that there may be different patterns of extracellular matrix (ECM) remodeling. To evaluate ECM remodeling, C57BL/6 mice were submitted to either a nasal drop of PPE (PPE 28 Days) or exposed for 6 months to cigarette smoke (CS 6 months). Control groups received either an intranasal instillation of saline solution (Saline 28 Days) or remained without any smoke inhalation for six months (Control 6 months). We measured the mean linear intercept and the volume proportion of collagen type I, collagen type III, elastin and fibrillin. We used emission-scanning confocal microscopy to verify the fiber distribution. Both models induced increased mean linear intercept in relation to the respective controls, being larger in the elastase model in relation to the CS model. In the CS model, emphysema was associated with an increase in the volume proportion of fibrillin, whereas in the PPE model there was an increase in the parenchymal elastin content. In both models, there was an increase in collagen type III, which was higher in the CS-exposed mice. We concluded that ECM remodeling is different in the two most used experimental models of emphysema.
Palavras-chave
Emphysema, Extracellular matrix remodeling, Elastin, Fibrillin-1
Referências
  1. Abraham T., 2000, J STRUCT BIOL, V171, P189
  2. Chen JC, 1998, J INVEST SURG, V11, P129, DOI 10.3109/08941939809032192
  3. Chen LJ, 2005, TOXICOL SCI, V83, P372, DOI 10.1093/toxsci/kfi019
  4. Fabbri LM, 2003, EUR RESPIR J, V22, P1, DOI 10.1183/09031936.03.00063703
  5. Global Initiative for Chronic Lung Disease, 2010, GLOB STRAT DIAGN MAN
  6. Ito S, 2005, J APPL PHYSIOL, V98, P503, DOI 10.1152/japplphysiol.00590.2004
  7. Koenders M. M., 2009, J PATHOL, V163, P33
  8. Kononov S, 2001, AM J RESP CRIT CARE, V164, P1920
  9. KUHN C, 1976, LAB INVEST, V34, P372
  10. Mahadeva R, 2002, THORAX, V57, P908, DOI 10.1136/thorax.57.10.908
  11. MARGRAF LR, 1991, AM REV RESPIR DIS, V143, P391
  12. Neptune ER, 2003, NAT GENET, V33, P407, DOI 10.1038/ng1116
  13. OSMAN M, 1985, AM REV RESPIR DIS, V132, P640
  14. Rabe KF, 2007, AM J RESP CRIT CARE, V176, P532, DOI 10.1164/rccm.200703-456SO
  15. Rangasamy T, 2009, AM J PHYSIOL-LUNG C, V296, pL888, DOI 10.1152/ajplung.90369.2008
  16. Robbesom AA, 2008, MODERN PATHOL, V21, P297, DOI 10.1038/modpathol.3801004
  17. Shifren A, 2007, AM J PHYSIOL-LUNG C, V292, pL778, DOI 10.1152/ajplung.00352.2006
  18. Shifren Adrian, 2006, Proc Am Thorac Soc, V3, P428, DOI 10.1513/pats.200601-009AW
  19. Silver FH, 2002, J THEOR BIOL, V216, P243, DOI 10.1006/jtbi.2002.2542
  20. Siracusa LD, 1996, GENOME RES, V6, P300, DOI 10.1101/gr.6.4.300
  21. Suki B, 2003, AM J RESP CRIT CARE, V168, P516, DOI 10.1164/rccm.200208-908PP
  22. Suki B, 2008, RESP PHYSIOL NEUROBI, V163, P33, DOI 10.1016/j.resp.2008.03.015
  23. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  24. Wright JL, 2008, AM J PHYSIOL-LUNG C, V295, pL1, DOI 10.1152/ajplung.90200.2008
  25. Zacchigna L, 2006, CELL, V124, P929, DOI 10.1016/j.cell.2005.12.035