Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/23431
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorBRENTANI, Helena-
dc.contributor.authorNAKANO, Eduardo Y.-
dc.contributor.authorMARTINS, Camila B.-
dc.contributor.authorIZBICKI, Rafael-
dc.contributor.authorPEREIRA, Carlos Alberto-
dc.date.accessioned2017-11-27T16:34:36Z-
dc.date.available2017-11-27T16:34:36Z-
dc.date.issued2011-
dc.identifier.citationSTATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, v.10, n.1, article ID 22, 23p, 2011-
dc.identifier.issn2194-6302-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/23431-
dc.description.abstractHardy-Weinberg Equilibrium (HWE) is an important genetic property that populations should have whenever they are not observing adverse situations as complete lack of panmixia, excess of mutations, excess of selection pressure, etc. HWE for decades has been evaluated; both frequentist and Bayesian methods are in use today. While historically the HWE formula was developed to examine the transmission of alleles in a population from one generation to the next, use of HWE concepts has expanded in human diseases studies to detect genotyping error and disease susceptibility (association); Ryckman and Williams (2008). Most analyses focus on trying to answer the question of whether a population is in HWE. They do not try to quantify how far from the equilibrium the population is. In this paper, we propose the use of a simple disequilibrium coefficient to a locus with two alleles. Based on the posterior density of this disequilibrium coefficient, we show how one can conduct a Bayesian analysis to verify how far from HWE a population is. There are other coefficients introduced in the literature and the advantage of the one introduced in this paper is the fact that, just like the standard correlation coefficients, its range is bounded and it is symmetric around zero (equilibrium) when comparing the positive and the negative values. To test the hypothesis of equilibrium, we use a simple Bayesian significance test, the Full Bayesian Significance Test (FBST); see Pereira, Stern andWechsler (2008) for a complete review. The disequilibrium coefficient proposed provides an easy and efficient way to make the analyses, especially if one uses Bayesian statistics. A routine in R programs (R Development Core Team, 2009) that implements the calculations is provided for the readers.-
dc.description.sponsorshipBrazilian Research Institution: FAPESP-
dc.description.sponsorshipBrazilian Research Institution: CAPES-
dc.description.sponsorshipBrazilian Research Institution: CNPq-
dc.language.isoeng-
dc.publisherWALTER DE GRUYTER GMBH-
dc.relation.ispartofStatistical Applications in Genetics and Molecular Biology-
dc.rightsrestrictedAccess-
dc.subjectBayesian methods-
dc.subjectFBST-
dc.subjectHardy-Weinberg equilibrium-
dc.subject.otherhardy-weinberg equilibrium-
dc.subject.othermultiallelic significance test-
dc.subject.otheralzheimers-disease-
dc.subject.otherproportions-
dc.subject.otherlaw-
dc.subject.otherpolymorphisms-
dc.subject.otherrisk-
dc.titleDisequilibrium Coefficient: A Bayesian Perspective-
dc.typearticle-
dc.rights.holderCopyright WALTER DE GRUYTER GMBH-
dc.identifier.doi10.2202/1544-6115.1636-
dc.subject.wosBiochemistry & Molecular Biology-
dc.subject.wosMathematical & Computational Biology-
dc.subject.wosStatistics & Probability-
dc.type.categoryoriginal article-
dc.type.versionpublishedVersion-
hcfmusp.author.externalNAKANO, Eduardo Y.:Univ Brasilia, Dept Stat, BR-70910900 Brasilia, DF, Brazil-
hcfmusp.author.externalMARTINS, Camila B.:Univ Sao Paulo, Inst Math & Stat, BR-05508 Sao Paulo, Brazil-
hcfmusp.author.externalIZBICKI, Rafael:Univ Sao Paulo, Inst Math & Stat, BR-05508 Sao Paulo, Brazil-
hcfmusp.author.externalPEREIRA, Carlos Alberto:Univ Sao Paulo, Inst Math & Stat, BR-05508 Sao Paulo, Brazil-
hcfmusp.description.articlenumber22-
hcfmusp.description.issue1-
hcfmusp.description.volume10-
hcfmusp.origemWOS-
hcfmusp.origem.idWOS:000291213200004-
hcfmusp.origem.id2-s2.0-79958089419-
hcfmusp.publisher.cityBERLIN-
hcfmusp.publisher.countryGERMANY-
hcfmusp.relation.referenceHERNANDEZ JL, 1989, BIOMETRICS, V45, P53, DOI 10.2307/2532034-
hcfmusp.relation.referenceYule GU, 1912, J R STAT SOC, V75, P579, DOI 10.2307/2340126-
hcfmusp.relation.referenceAyres KL, 1998, HEREDITY, V80, P769, DOI 10.1038/sj.hdy.6883600-
hcfmusp.relation.referenceEMIGH TH, 1980, BIOMETRICS, V36, P627, DOI 10.2307/2556115-
hcfmusp.relation.referenceHardy GH, 1908, SCIENCE, V28, P49, DOI 10.1126/science.28.706.49-
hcfmusp.relation.referenceHosking L, 2004, EUR J HUM GENET, V12, P395, DOI 10.1038/sj.ejhg.5201164-
hcfmusp.relation.referenceLambert JC, 2002, NEUROLOGY, V59, P59-
hcfmusp.relation.referenceCHOW M, 1992, CAN J STAT, V20, P291, DOI 10.2307/3315316-
hcfmusp.relation.referenceBASU D, 1977, J AM STAT ASSOC, V72, P355, DOI 10.2307/2286800-
hcfmusp.relation.referenceBASU D, 1982, J STAT PLAN INFER, V6, P345, DOI 10.1016/0378-3758(82)90004-0-
hcfmusp.relation.referenceBhojak TJ, 2000, NEUROSCI LETT, V288, P21, DOI 10.1016/S0304-3940(00)01185-X-
hcfmusp.relation.referenceDECAMPOS CP, 2011, P 22 INT JOINT C ART-
hcfmusp.relation.referenceIrony TZ, 2000, AM STAT, V54, P57, DOI 10.2307/2685613-
hcfmusp.relation.referenceJEFFREYS H., 1931, SCI INFERENCE-
hcfmusp.relation.referenceLauretto MS, 2009, GENET MOL BIOL, V32, P619, DOI 10.1590/S1415-47572009000300028-
hcfmusp.relation.referenceLindley DV, 1988, BAYESIAN STATISTICS, V3, P307-
hcfmusp.relation.referenceAttia J, 2010, STAT APPL GENET MOL, V9, DOI 10.2202/1544-6115.1463-
hcfmusp.relation.referenceMontoya-Delgado LE, 2001, GENETICS, V158, P875-
hcfmusp.relation.referencePereira CAB, 2006, GENET MOL RES, V5, P619-
hcfmusp.relation.referencePereira C.A.B., 1999, ENTROPY, V1, P99-
hcfmusp.relation.referencePereira CAD, 2008, REVSTAT-STAT J, V6, P199-
hcfmusp.relation.referencePereira CAD, 2008, BAYESIAN ANAL, V3, P79-
hcfmusp.relation.referencePEREIRA CAD, 1984, REV BRAS GENET, V7, P689-
hcfmusp.relation.referenceR Development Core Team, 2009, R LANG ENV STAT COMP-
hcfmusp.relation.referenceRao C. R., 1965, LINEAR STAT INFERENC-
hcfmusp.relation.referenceRogatko A, 2002, THEOR POPUL BIOL, V62, P251, DOI 10.1006/tpbi.2002.1613-
hcfmusp.relation.referenceRYCKMAN K, 2008, CURRENT PROTOCOLS HU, V57-
hcfmusp.relation.referenceShoemaker J, 1998, GENETICS, V149, P2079-
hcfmusp.relation.referenceSINGER JM, 1991, STAT PROBABIL LETT, V11, P173, DOI 10.1016/0167-7152(91)90138-H-
hcfmusp.relation.referenceWakefield J, 2010, BIOMETRICS, V66, P257, DOI 10.1111/j.1541-0420.2009.01267.x-
hcfmusp.relation.referenceWeinberg W, 1908, JAHRESHEFTE VEREINS, V64, P369-
hcfmusp.relation.referenceWeir BS, 1996, GENETIC DATA ANAL, VII-
dc.description.indexMEDLINE-
dc.identifier.eissn1544-6115-
hcfmusp.citation.scopus4-
hcfmusp.scopus.lastupdate2022-11-04-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MPS
Departamento de Psiquiatria - FM/MPS

Artigos e Materiais de Revistas Científicas - LIM/23
LIM/23 - Laboratório de Psicopatologia e Terapêutica Psiquiátrica


Files in This Item:
File Description SizeFormat 
art_BRENTANI_Disequilibrium_Coefficient_A_Bayesian_Perspective_2011.PDF
  Restricted Access
publishedVersion (English)912.45 kBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.