State-dependent microstructural white matter changes in drug-naive patients with first-episode psychosis

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Citação
PSYCHOLOGICAL MEDICINE, v.47, n.15, p.2613-2627, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background. Diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) microstructural abnormalities in schizophrenia. Whether or not such alterations could vary depending on clinical status (i.e. acute psychosis v. remission) remains to be investigated. Methods. Twenty-five treatment-naive first-episode psychosis (FEP) patients and 51 healthy-controls (HC) underwent MRI scanning at baseline. Twenty-one patients were re-scanned as soon as they achieved sustained remission of symptoms; 36 HC were also scanned twice. Rate-of-change maps of longitudinal DTI changes were calculated for in order to examine WM alterations associated with changes in clinical status. We conducted voxelwise analyses of fractional anisotropy (FA) and trace (TR) maps. Results. At baseline, FEP presented reductions of FA in comparison with HC [p < 0.05, false-discovery rate (FDR)-corrected] affecting fronto-limbic WM and associative, projective and commissural fasciculi. After symptom remission, patients showed FA increase over time (p < 0.001, uncorrected) in some of the above WM tracts, namely the right anterior thalamic radiation, right uncinate fasciculus/inferior fronto-occipital fasciculus, and left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. We also found significant correlations between reductions in PANSS scores and FA increases over time (p < 0.05, FDR-corrected). Conclusions. WM changes affecting brain tracts critical to the integration of perceptual information, cognition and emotions are detectable soon after the onset of FEP and may partially reverse in direct relation to the remission of acute psychotic symptoms. Our findings reinforce the view that WM abnormalities in brain tracts are a key neurobiological feature of acute psychotic disorders, and recovery from such WM pathology can lead to amelioration of symptoms.
Palavras-chave
Antipsychotic, diffusion tensor imaging, disease phase, first-episode psychosis, schizophrenia, white matter
Referências
  1. Alexander AL, 2007, NEUROTHERAPEUTICS, V4, P316, DOI 10.1016/j.nurt.2007.05.011
  2. Allen P, 2012, SCHIZOPHRENIA BULL, V38, P695, DOI 10.1093/schbul/sbs066
  3. American Psychiatric Association, 1994, DIAG STAT MAN MENT D
  4. Andreasen NC, 2010, BIOL PSYCHIAT, V67, P255, DOI 10.1016/j.biopsych.2009.08.040
  5. Andreasen NC, 2005, AM J PSYCHIAT, V162, P441, DOI 10.1176/appi.ajp.162.3.441
  6. Anticevic A, 2014, CEREB CORTEX, V24, P3116, DOI 10.1093/cercor/bht165
  7. Ashtari M, 2007, ARCH GEN PSYCHIAT, V64, P1270, DOI 10.1001/archpsyc.64.11.1270
  8. Bartzokis G, 2012, NEUROPHARMACOLOGY, V62, P2137, DOI 10.1016/j.neuropharm.2012.01.015
  9. Bates AT, 2004, J PSYCHIAT RES, V38, P347, DOI 10.1016/j.jpsychires.2003.11.002
  10. Beaulieu C, 2002, NMR BIOMED, V15, P435, DOI 10.1002/nbm.782
  11. Bleuler E, 1911, DEMENTIA PRAECOX GRO
  12. Bora E, 2011, SCHIZOPHR RES, V127, P46, DOI 10.1016/j.schres.2010.12.020
  13. Carettri F, 2012, SCHIZOPHRENIA BULL, V38, P1170, DOI 10.1093/schbul/sbs053
  14. Catani M, 2008, CORTEX, V44, P1105, DOI 10.1016/j.cortex.2008.05.004
  15. Cheng YQ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112307
  16. Concha L, 2010, J NEUROSCI, V30, P996, DOI 10.1523/JNEUROSCI.1619-09.2010
  17. Cookey J, 2014, SCHIZOPHR RES, V156, P137, DOI 10.1016/j.schres.2014.04.026
  18. Curcic-Blake B, 2015, BRAIN STRUCT FUNCT, V220, P407, DOI 10.1007/s00429-013-0663-y
  19. Curcic-Blake B, 2013, SCHIZOPHRENIA BULL, V39, P1087, DOI 10.1093/schbul/sbs107
  20. DeLisi LE, 2008, SCHIZOPHRENIA BULL, V34, P312, DOI 10.1093/schbul/sbm164
  21. Ebdrup BH, 2016, J PSYCHIATR NEUROSCI, V41, P133, DOI 10.1503/jpn.150030
  22. Eklund A, 2016, P NATL ACAD SCI USA, V113, P7900, DOI 10.1073/pnas.1602413113
  23. Ellison-Wright I, 2009, SCHIZOPHR RES, V108, P3, DOI 10.1016/j.schres.2008.11.021
  24. Filippi M, 2014, AM J NEURORADIOL, V35, P30, DOI 10.3174/ajnr.A3583
  25. First MB, 1995, STRUCTURED CLIN INTE
  26. Fox RJ, 2011, AM J NEURORADIOL, V32, P85, DOI 10.3174/ajnr.A2238
  27. Friston KJ, 1998, SCHIZOPHR RES, V30, P115, DOI 10.1016/S0920-9964(97)00140-0
  28. Gao WJ, 2013, J AFFECT DISORDERS, V150, P70, DOI 10.1016/j.jad.2013.02.021
  29. GOLDBERG TE, 1990, ARCH GEN PSYCHIAT, V47, P1066
  30. Haroutunian V, 2014, GLIA, V62, P1856, DOI 10.1002/glia.22716
  31. Ho BC, 2011, ARCH GEN PSYCHIAT, V68, P128, DOI 10.1001/archgenpsychiatry.2010.199
  32. Itahashi T, 2015, NEUROIMAGE-CLIN, V7, P155, DOI 10.1016/j.nicl.2014.11.019
  33. Jones DK, 2008, CORTEX, V44, P936, DOI 10.1016/j.cortex.2008.05.002
  34. Jones DK, 2013, NEUROIMAGE, V73, P239, DOI 10.1016/j.neuroimage.2012.06.081
  35. Jones DK, 2010, NMR BIOMED, V23, P803, DOI 10.1002/nbm.1543
  36. Katagiri N, 2015, SCHIZOPHR RES, V162, P7, DOI 10.1016/j.schres.2015.01.002
  37. KAY SR, 1987, SCHIZOPHRENIA BULL, V13, P261
  38. Keshavan MS, 1998, J PSYCHIAT RES, V32, P161, DOI 10.1016/S0022-3956(97)00038-1
  39. Kitis O, 2012, PSYCHIAT CLIN NEUROS, V66, P34, DOI 10.1111/j.1440-1819.2011.02293.x
  40. Klingberg S, 2008, J PSYCHIATR RES, V42, P259, DOI 10.1016/j.jpsychires.2007.02.001
  41. Kochunov P, 2014, SCHIZOPHRENIA BULL, V40, P721, DOI 10.1093/schbul/sbu070
  42. Kraepelin E, 1919, DEMENTIA PRAECOX PAR, P213
  43. Kubota M, 2013, JAMA PSYCHIAT, V70, P12, DOI 10.1001/archgenpsychiatry.2012.1023
  44. Lee SH, 2013, SCHIZOPHR RES, V143, P231, DOI 10.1016/j.schres.2012.11.029
  45. Lei W, 2015, SCI REP-UK, V5, DOI 10.1038/srep12994
  46. Levitt JJ, 2012, SCHIZOPHR RES, V136, P55, DOI 10.1016/j.schres.2011.09.009
  47. Levitt JJ, 2010, PSYCHIAT RES-NEUROIM, V184, P143, DOI 10.1016/j.pscychresns.2010.08.004
  48. Li W, 2013, BRAIN RES, V1531, P58, DOI 10.1016/j.brainres.2013.07.036
  49. Lieberman JA, 2001, BIOL PSYCHIAT, V50, P884, DOI 10.1016/S0006-3223(01)01303-8
  50. Lim JS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091400
  51. Lu SJ, 2013, AUST NZ J PSYCHIAT, V47, P1183, DOI 10.1177/0004867413508454
  52. Mamah D, 2010, PSYCHIAT RES-NEUROIM, V183, P144, DOI 10.1016/j.pscychresns.2010.04.013
  53. Marenco S, 2012, NEUROPSYCHOPHARMACOL, V37, P499, DOI 10.1038/npp.2011.215
  54. Marques TR, 2014, BRAIN, V137, P172, DOI 10.1093/brain/awt310
  55. Meda SA, 2014, P NATL ACAD SCI USA, V111, pE2066, DOI 10.1073/pnas.1313093111
  56. Melicher T, 2015, SCHIZOPHR RES, V162, P22, DOI 10.1016/j.schres.2015.01.029
  57. Menezes PR, 1996, BRIT J PSYCHIAT, V168, P612, DOI 10.1192/bjp.168.5.612
  58. Mighdoll MI, 2015, SCHIZOPHR RES, V161, P85, DOI 10.1016/j.schres.2014.09.040
  59. Monji A, 2013, PROG NEURO-PSYCHOPH, V42, P115, DOI 10.1016/j.pnpbp.2011.12.002
  60. Mori T, 2007, PSYCHIAT RES-NEUROIM, V154, P133, DOI 10.1016/j.pscychresns.2006.09.004
  61. Mukherjee P, 2008, AM J NEURORADIOL, V29, P843, DOI 10.3174/ajnr.A1052
  62. Najjar S, 2015, SCHIZOPHR RES, V161, P102, DOI 10.1016/j.schres.2014.04.041
  63. Nir TM, 2013, NEUROIMAGE-CLIN, V3, P180, DOI 10.1016/j.nicl.2013.07.006
  64. Oestreich LKL, 2016, BRAIN IMAGING BEHAV, V10, P445, DOI 10.1007/s11682-015-9421-5
  65. Olabi B, 2011, BIOL PSYCHIAT, V70, P88, DOI 10.1016/j.biopsych.2011.01.032
  66. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  67. Ou YM, 2011, MED IMAGE ANAL, V15, P622, DOI 10.1016/j.media.2010.07.002
  68. Patel S, 2011, SCHIZOPHR RES, V129, P149, DOI 10.1016/j.schres.2011.03.014
  69. Pierpaoli C, 1996, MAGNET RESON MED, V36, P893, DOI 10.1002/mrm.1910360612
  70. Pol HEH, 2008, SCHIZOPHRENIA BULL, V34, P354, DOI 10.1093/schbul/sbm168
  71. Qiu C, 2014, BIOMED RES INT, V2014
  72. Rosa PGP, 2015, PSYCHOL MED, V45, P817, DOI 10.1017/S0033291714001895
  73. Ruef A, 2012, J PSYCHIATR NEUROSCI, V37, P305, DOI 10.1503/jpn.110057
  74. Samartzis L, 2014, J NEUROIMAGING, V24, P101, DOI 10.1111/j.1552-6569.2012.00779.x
  75. SAUNDERS JB, 1993, ADDICTION, V88, P791, DOI 10.1111/j.1360-0443.1993.tb02093.x
  76. Sbardella E, 2013, MULT SCLER INT, DOI 10.1155/2013/671730
  77. Schaufelberger MS, 2011, PSYCHOL MED, V41, P1677, DOI 10.1017/S0033291710002163
  78. Schlosser RGM, 2007, SCHIZOPHR RES, V89, P1, DOI 10.1016/j.schres.2006.09.007
  79. Skudlarski P, 2013, AM J PSYCHIAT, V170, P886, DOI 10.1176/appi.ajp.2013.12111448
  80. Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024
  81. Snook L, 2007, NEUROIMAGE, V34, P243, DOI 10.1016/j.neuroimage.2006.07.021
  82. Spalletta G, 2014, BRAIN BEHAV, V4, P261, DOI 10.1002/brb3.212
  83. Sun Y, 2016, SCHIZOPHR RES, V171, P149, DOI 10.1016/j.schres.2016.01.025
  84. Szeszko PR, 2008, NEUROPSYCHOPHARMACOL, V33, P976, DOI 10.1038/sj.npp.1301480
  85. Szeszko PR, 2014, NEUROPSYCHOPHARMACOL, V39, P1324, DOI 10.1038/npp.2013.288
  86. Takahashi N, 2011, PROG NEUROBIOL, V93, P13, DOI 10.1016/j.pneurobio.2010.09.004
  87. Tha KK, 2013, PSYCHIAT RES-NEUROIM, V212, P208, DOI 10.1016/j.pscychresns.2012.07.004
  88. Van Hecke W, 2010, HUM BRAIN MAPP, V31, P98, DOI 10.1002/hbm.20848
  89. Wagner G, 2015, CORTEX, V66, P35, DOI 10.1016/j.cortex.2015.02.004
  90. Wakana S, 2004, RADIOLOGY, V230, P77, DOI 10.1148/radiol.2301021640
  91. Wang Q, 2013, PSYCHOL MED, V43, P2301, DOI 10.1017/S0033291713000238
  92. Wheeler-Kingshott CAM, 2009, MAGN RESON MED, V61, P1255, DOI 10.1002/mrm.21965
  93. WORSLEY KJ, 1992, J CEREBR BLOOD F MET, V12, P900
  94. Xiao L, 2008, MOL PSYCHIATR, V13, P697, DOI 10.1038/sj.mp.4002064
  95. Yao L, 2013, PROG NEURO-PSYCHOPH, V45, P100, DOI 10.1016/j.pnpbp.2013.04.019
  96. Zeng BT, 2016, SCHIZOPHR RES, V172, P1, DOI 10.1016/j.schres.2016.01.051
  97. Zhang YB, 2012, SCHIZOPHR RES, V138, P8, DOI 10.1016/j.schres.2012.04.006