CD4(+) T Cells Alter the Stromal Microenvironment and Repress Medullary Erythropoiesis in Murine Visceral Leishmaniasis

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
PREHAM, Olivier
PINHO, Flaviane A.
PINTO, Ana Isabel
RANI, Gulab Fatima
BROWN, Najmeeyah
HITCHCOCK, Ian S.
KAYE, Paul M.
Citação
FRONTIERS IN IMMUNOLOGY, v.9, article ID 2958, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human visceral leishmaniasis, a parasitic disease of major public health importance in developing countries, is characterized by variable degrees of severity of anemia, but the mechanisms underlying this change in peripheral blood have not been thoroughly explored. Here, we used an experimental model of visceral leishmaniasis in C57BL/6 mice to explore the basis of anemia following infection with Leishmania donovani. 28 days post-infection, mice showed bone marrow dyserythropoiesis by myelogram, with a reduction of TER119(+) CD71(-/+) erythroblasts. Reduction of medullary erythropoiesis coincided with loss of CD169(high) bone marrow stromal macrophages and a reduction of CXCL12-expressing stromal cells. Although the spleen is a site of extramedullary erythropoiesis and erythrophagocytosis, splenectomy did not impact the extent of anemia or affect the repression of medullary hematopoiesis that was observed in infected mice. In contrast, these changes in bone marrow erythropoiesis were not evident in B6.Rag2(-/-) mice, but could be fully reconstituted by adoptive transfer of IFN gamma-producing but not IFN gamma-deficient CD4(+) T cells, mimicking the expansion of IFN gamma-producing CD4(+) T cells that occurs during infection in wild type mice. Collectively, these data indicate that anemia during experimental murine visceral leishmaniasis can be driven by defects associated with the bone marrow erythropoietic niche, and that this represents a further example of CD4(+) T cell-mediated immunopathology affecting hematopoietic competence.
Palavras-chave
erythropoiesis, stromal cells, macrophages, bone marrow, leishmaniasis
Referências
  1. Abidin BM, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006422
  2. Alexandropoulou O, 2012, PEDIATR EMERG CARE, V28, P533, DOI 10.1097/PEC.0b013e3182587d5d
  3. Bankoti R, 2012, J TROP MED, DOI 10.1155/2012/639304
  4. Belo VS, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002982
  5. Besada E, 2013, RHEUMATOL INT, V33, P2687, DOI 10.1007/s00296-012-2483-4
  6. Burberry A, 2014, CELL HOST MICROBE, V15, P779, DOI 10.1016/j.chom.2014.05.004
  7. CARTWRIGHT GE, 1948, BLOOD, V3, P249
  8. Casanova-Acebes M, 2013, CELL, V153, P1025, DOI 10.1016/j.cell.2013.04.040
  9. Chow A, 2013, NAT MED, V19, P429, DOI 10.1038/nm.3057
  10. Chow A, 2011, J EXP MED, V208, P261, DOI 10.1084/jem.20101688
  11. Coterell SEJ, 2000, INFECT IMMUN, V68, P1840, DOI 10.1128/IAI.68.4.1840-1848.2000
  12. Cotterell SEJ, 2000, BLOOD, V95, P1642
  13. Coura-Vital W, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0003374
  14. CROCKER PR, 1989, J EXP MED, V169, P1333, DOI 10.1084/jem.169.4.1333
  15. Engwerda CR, 2004, TRENDS PARASITOL, V20, P524, DOI 10.1016/j.pt.2004.08.009
  16. Frenette PS, 2013, ANNU REV IMMUNOL, V31, P285, DOI 10.1146/annurev-immunol-032712-095919
  17. Ghosh K, 2007, PARASITOL RES, V101, P1463, DOI 10.1007/s00436-007-0742-1
  18. Goto Y, 2017, PARASITOL RES, V116, P457, DOI 10.1007/s00436-016-5313-x
  19. Heideveld E, 2018, HAEMATOLOGICA, V103, P395, DOI 10.3324/haematol.2017.179341
  20. Jacobsen RN, 2014, EXP HEMATOL, V42, P547, DOI 10.1016/j.exphem.2014.03.009
  21. Johns JL, 2012, INNATE IMMUN-LONDON, V18, P418, DOI 10.1177/1753425911413794
  22. Kopterides P, 2003, AM J HEMATOL, V74, P198, DOI 10.1002/ajh.10408
  23. Koster KL, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00059
  24. KOULNIS M, 2011, JOVE J VIS EXP AUG, DOI 10.3791/2809
  25. Lafuse WP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059509
  26. Levesque JP, 2004, BLOOD, V104, P65, DOI 10.1182/blood-2003-05-1589
  27. Morimoto A, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004505
  28. Musaya J, 2015, MALAWI MED J, V27, P45, DOI 10.4314/mmj.v27i2.3
  29. Omatsu Y, 2010, IMMUNITY, V33, P387, DOI 10.1016/j.immuni.2010.08.017
  30. Pietras EM, 2017, BLOOD, V130, P1693, DOI [10.1182/blood-2017-06-780882, 10.1182/blood-2017-06780882]
  31. Pinto AI, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006465
  32. Roy SS, 2009, MOL CELL BIOCHEM, V321, P53, DOI 10.1007/s11010-008-9909-z
  33. Samanta S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042361
  34. Soderberg M, 2007, MOL IMMUNOL, V44, P3204, DOI 10.1016/j.molimm.2007.01.029
  35. Spaulding E, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005975
  36. Sugiyama T, 2006, IMMUNITY, V25, P977, DOI 10.1016/j.immuni.2006.10.016
  37. Varma N, 2010, INDIAN J HEMATOL BLO, V26, P78, DOI 10.1007/s12288-010-0027-1
  38. WOODRUFF AW, 1972, BRIT J HAEMATOL, V22, P319, DOI 10.1111/j.1365-2141.1972.tb05678.x
  39. Yang M, 2013, ANN HEMATOL, V92, P587, DOI 10.1007/s00277-012-1653-5
  40. Yarali N, 2002, AM J HEMATOL, V71, P191, DOI 10.1002/ajh.10200