An effective CTL peptide vaccine for Ebola Zaire Based on Survivors' CD8+targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design

Carregando...
Imagem de Miniatura
Citações na Scopus
38
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
V, C. Herst
BURKHOLZ, S.
SIDNEY, J.
SETTE, A.
HARRIS, P. E.
MASSEY, S.
BRASEL, T.
ROSA, D. S.
CHAO, W. C. H.
Citação
VACCINE, v.38, n.28, p.4464-4475, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple Class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus. (C) 2020 The Author(s).
Palavras-chave
Ebola Zaire vaccine, CTL Vaccine, Controller, YQVNNLEEI, COVID-19, SARS-CoV-2, Flow Focusing
Referências
  1. Agnandji ST, 2016, NEW ENGL J MED, V374, P1647, DOI 10.1056/NEJMoa1502924
  2. Alves DA, 2010, VET PATHOL, V47, P831, DOI 10.1177/0300985810378597
  3. Andreatta M, 2016, BIOINFORMATICS, V32, P511, DOI 10.1093/bioinformatics/btv639
  4. Basler CF, 2009, J INTERF CYTOK RES, V29, P511, DOI 10.1089/jir.2009.0076
  5. Bassani-Sternberg M, 2015, MOL CELL PROTEOMICS, V14, P658, DOI 10.1074/mcp.M114.042812
  6. Bellan SE, 2014, LANCET, V384, P1499, DOI 10.1016/S0140-6736(14)61839-0
  7. Billeskov R, 2017, J IMMUNOL, V198, P3494, DOI 10.4049/jimmunol.1600965
  8. Blicher T, 2005, ACTA CRYSTALLOGR D, V61, P1031, DOI 10.1107/S0907444905013090
  9. Borthwick N, 2014, MOL THER, V22, P464, DOI 10.1038/mt.2013.248
  10. Brister JR, 2015, NUCLEIC ACIDS RES, V43, pD571, DOI 10.1093/nar/gku1207
  11. Chang CK, 2014, ANTIVIR RES, V103, P39, DOI 10.1016/j.antiviral.2013.12.009
  12. Channappanavar R, 2014, IMMUNOL RES, V59, P118, DOI 10.1007/s12026-014-8534-z
  13. Cheung Y K, 2008, Hong Kong Med J, V14 Suppl 4, P27
  14. Cheung YK, 2007, VACCINE, V25, P6070, DOI 10.1016/j.vaccine.2007.05.025
  15. Cunha-Neto E, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00640
  16. Dong SS, 2015, PROTEIN CELL, V6, P351, DOI 10.1007/s13238-015-0163-3
  17. Ebihara H, 2011, J INFECT DIS, V204, pS991, DOI 10.1093/infdis/jir336
  18. Eichmann M, 2014, TISSUE ANTIGENS, V84, P378, DOI 10.1111/tan.12413
  19. Feldmann H, 2003, NAT REV IMMUNOL, V3, P677, DOI 10.1038/nri1154
  20. Frank SA, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-229
  21. Geisbert TW, 2003, AM J PATHOL, V163, P2347, DOI 10.1016/S0002-9440(10)63591-2
  22. Gilbert SC, 2012, IMMUNOLOGY, V135, P19, DOI 10.1111/j.1365-2567.2011.03517.x
  23. Gupta M, 2005, J IMMUNOL, V174, P4198, DOI 10.4049/jimmunol.174.7.4198
  24. Hansen SG, 2011, NATURE, V473, P523, DOI 10.1038/nature10003
  25. Harndahl Mikkel, 2006, LARGE SCALE ANAL PEP
  26. Hensley LE, 2002, IMMUNOL LETT, V80, P169, DOI 10.1016/S0165-2478(01)00327-3
  27. Huber SR, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00171
  28. Jain S, 2019, MED MICROBIOL IMMUN, V208, P227, DOI 10.1007/s00430-019-00584-y
  29. Jones SM, 2005, NAT MED, V11, P786, DOI 10.1038/nm1258
  30. Julia Ponomarenko, 2015, EBOLA ANAL IMMUNITY, DOI [10.1109/aisw.2015.7469230., DOI 10.1109/AISW.2015.7469230]
  31. Jurtz V, 2017, J IMMUNOL, V199, P3360, DOI 10.4049/jimmunol.1700893
  32. KALIDI I, 1988, TISSUE ANTIGENS, V31, P98, DOI 10.1111/j.1399-0039.1988.tb02070.x
  33. Lai CY, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01571
  34. Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404
  35. Leffel EK, 2004, BIOSECUR BIOTERROR, V2, P186, DOI 10.1089/bsp.2004.2.186
  36. Liu L, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.123158
  37. Liu WJ, 2017, ANTIVIR RES, V137, P82, DOI 10.1016/j.antiviral.2016.11.006
  38. Martin-Banderas L, 2005, SMALL, V1, P688, DOI 10.1002/smll.200500087
  39. McElroy AK, 2015, P NATL ACAD SCI USA, V112, P4719, DOI 10.1073/pnas.1502619112
  40. Mekibib B, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8050148
  41. Nfon Charles K Leung, 2013, PLOS ONE, DOI [10.1371/journal.pone.0061904., DOI /10.1371/JOURNAL.PONE.0061904]
  42. Nielsen M, 2003, PROTEIN SCI, V12, P1007, DOI 10.1110/ps.0239403
  43. Oh HLJ, 2012, EMERG MICROBES INFEC, V1, DOI 10.1038/emi.2012.26
  44. Ohno S, 2009, VACCINE, V27, P3912, DOI 10.1016/j.vaccine.2009.04.001
  45. Peng H, 2006, VIROLOGY, V351, P466, DOI 10.1016/j.virol.2006.03.036
  46. Pereyra F, 2014, J VIROL, V88, P12937, DOI 10.1128/JVI.01004-14
  47. Pereyra FP, 2010, SCIENCE, V330, P1551, DOI 10.1126/science.1195271
  48. Rasmussen Michael, 2014, LARGE SCALE ANAL PEP
  49. Rezza G, 2015, HUM VACC IMMUNOTHER, V11, P1258, DOI 10.1080/21645515.2015.1021528
  50. Rubsamen RM, 2014, VACCINE, V32, P4111, DOI 10.1016/j.vaccine.2014.05.071
  51. Sakabe S, 2018, P NATL ACAD SCI USA, V115, pE7578, DOI 10.1073/pnas.1806200115
  52. SETTE A, 1994, MOL IMMUNOL, V31, P813, DOI 10.1016/0161-5890(94)90019-1
  53. Sidney John, 2013, Curr Protoc Immunol, VChapter 18, DOI 10.1002/0471142735.im1803s100
  54. Sidney John, 2006, SARS IEDB ENTRIES
  55. Smatti MK, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02991
  56. Sridhar S, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00195
  57. Sridhar S, 2013, NAT MED, V19, P1305, DOI 10.1038/nm.3350
  58. Sullivan NJ, 2000, NATURE, V408, P605, DOI 10.1038/35046108
  59. Sylvester-Hvid C Nielsen, 2004, SCANDINAVIAN J IMMUN, V59, P632, DOI [10.1111/j.0001-2815.2004.00221.x., DOI 10.1111/J.0001-2815.2004.00221.X]
  60. Takamatsu Y, 2018, P NATL ACAD SCI USA, V115, P1075, DOI 10.1073/pnas.1712263115
  61. Tang XL, 2020, NATL SCI REV, V7, P1012, DOI 10.1093/nsr/nwaa036
  62. Trolle T, 2016, J IMMUNOL, V196, P1480, DOI 10.4049/jimmunol.1501721
  63. Tsao YP, 2006, BIOCHEM BIOPH RES CO, V344, P63, DOI 10.1016/j.bbrc.2006.03.152
  64. VITA R, 2014, NUCL ACIDS RES
  65. Vogel OA, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00135
  66. Wan W, 2017, NATURE, V551, P394, DOI 10.1038/nature24490
  67. Wang FM, 1998, P NATL ACAD SCI USA, V95, P5217, DOI 10.1073/pnas.95.9.5217
  68. Warfield KL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118881
  69. Warfield KL, 2003, P NATL ACAD SCI USA, V100, P15889, DOI 10.1073/pnas.2237038100
  70. Wauquier N, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000837
  71. Weber DJ, 2013, VACCINES, V6
  72. Wilson JA, 2001, J VIROL, V75, P2660, DOI 10.1128/JVI.75.6.2660-2664.2001
  73. Wu G, 2005, J MOL MODEL, V11, P8, DOI 10.1007/s00894-004-0210-0
  74. Yong CY, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.01781
  75. Zhang LQ, 2006, J MED VIROL, V78, P1, DOI 10.1002/jmv.20499
  76. Zhao LX, 2013, HUM VACC IMMUNOTHER, V9, P2566, DOI 10.4161/hv.26088
  77. Zhou MH, 2006, J IMMUNOL, V177, P2138, DOI 10.4049/jimmunol.177.4.2138