Association of Pulse Pressure With Clinical Outcomes in Patients Under Different Antiplatelet Strategies After Percutaneous Coronary Intervention: Analysis of GLOBAL LEADERS

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
FARIA, Ana Paula de
MODOLO, Rodrigo
CHICHAREON, Ply
CHANG, Chun-Chin
KOGAME, Norihiro
TOMANIAK, Mariusz
TAKAHASHI, Kuniaki
RADEMAKER-HAVINGA, Tessa
WYKRZYKOWSKA, Joanna
WINTER, Rob J. de
Citação
CANADIAN JOURNAL OF CARDIOLOGY, v.36, n.5, p.747-755, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: We evaluated the association of pulse pressure (PP) and different antiplatelet regimes with clinical and safety outcomes in an all-comers percutaneous coronary intervention (PCI) population. Methods: In this analysis of GLOBAL LEADERS (n = 15,936) we compared the experimental therapy of 23 months of ticagrelor after 1 month of dual-antiplatelet therapy (DAPT) vs standard DAPT for 12 months followed by aspirin monotherapy in subjects who underwent PCI and were divided into 2 groups according to the median PP (60 mm Hg). The primary end point (all-cause death or new Q-wave myocardial infarction) and the composite end points: patient-oriented composite end points (POCE), Bleeding Academic Research Consortium (BARC) 3 or 5, and net adverse clinical events (NACE) were evaluated. Results: At 2 years, subjects in the high-PP group (n = 7971) had similar rates of the primary end point (4.3% vs 3.9%; P = 0.058), POCE (14.9% vs 12.7%; P = 0.051), and BARC 3 or 5 (2.5% vs 1.7%; P = 0.355) and higher rates of NACE (16.4% vs 13.7%; P = 0.037) compared with the low-PP group (n = 7965). Among patients with PP < 60 mm Hg, the primary end point (3.4% vs 4.4%, adjusted hazard ratio [aHR] 0.77, 95% confidence interval [CI] 0.61-0.96), POCE (11.8% vs 13.5%, aHR 0.86, 95% CI 0.76-0.98), NACE (12.8% vs 14.7%, aHR 0.85, 95% CI 0.76-0.96), and BARC 3 or 5 (1.4% vs 2.1%, aHR 0.69, 95% CI 0.49-0.97) were lower with ticagrelor monotherapy compared with DAPT. The only significant interaction was for BARC 3 or 5 (P = 0.008). Conclusions: After contemporary PCI, subjects with high PP levels experienced high rates of NACE at 2 years. In those with low PP, ticagrelor monotherapy led to a lower risk of bleeding events compared with standard DAPT.
Palavras-chave
Referências
  1. Alemayehu M, 2017, J AM COLL CARDIOL, V69, P2246, DOI 10.1016/j.jacc.2017.02.048
  2. Arima H, 2012, STROKE, V43, P1675, DOI 10.1161/STROKEAHA.112.651448
  3. Armstrong D, 2014, J CARDIOVASC PHARM T, V19, P209, DOI 10.1177/1074248413511693
  4. Benetos A, 2000, J AM COLL CARDIOL, V35, P673, DOI 10.1016/S0735-1097(99)00586-0
  5. Blacher J, 2000, ARCH INTERN MED, V160, P1085, DOI 10.1001/archinte.160.8.1085
  6. Bonello L, 2015, INT J CARDIOL, V187, P502, DOI 10.1016/j.ijcard.2015.03.414
  7. Campo G, 2017, THROMB HAEMOSTASIS, V117, P1208, DOI 10.1160/TH16-12-0973
  8. Cattaneo M, 2014, J AM COLL CARDIOL, V63, P2503, DOI 10.1016/j.jacc.2014.03.031
  9. Chirinos JA, 2005, AM J CARDIOL, V96, P645, DOI 10.1016/j.amjcard.2005.04.036
  10. Domanski M, 2001, HYPERTENSION, V38, P793, DOI 10.1161/hy1001.092966
  11. Domanski MJ, 2001, AM J CARDIOL, V87, P675, DOI 10.1016/S0002-9149(00)01482-X
  12. Franklin SS, 1999, CIRCULATION, V100, P354, DOI 10.1161/01.CIR.100.4.354
  13. Franklin SS, 1997, CIRCULATION, V96, P308
  14. Garcia-Garcia HM, 2018, CIRCULATION, V137, P2635, DOI 10.1161/CIRCULATIONAHA.117.029289
  15. Hasko G, 2012, ARTERIOSCL THROM VAS, V32, P865, DOI 10.1161/ATVBAHA.111.226852
  16. Jankowski P, 2004, ATHEROSCLEROSIS, V176, P151, DOI 10.1016/j.atherosclerosis.2004.04.021
  17. Jankowski P, 2007, BLOOD PRESSURE, V16, P238, DOI 10.1080/08037050701428166
  18. Jankowski P, 2007, BLOOD PRESSURE, V16, P246, DOI 10.1080/08037050701428125
  19. Jeong HS, 2017, JACC-CARDIOVASC INTE, V10, P1646, DOI 10.1016/j.jcin.2017.05.064
  20. Kai H, 2016, INT J CARDIOL, V224, P112, DOI 10.1016/j.ijcard.2016.09.004
  21. Lee RT, 1996, ARTERIOSCL THROM VAS, V16, P1070, DOI 10.1161/01.ATV.16.8.1070
  22. Leung MCH, 2006, AM J PHYSIOL-HEART C, V290, pH624, DOI 10.1152/ajpheart.00380.2005
  23. Lip GY, 2011, COCHRANE DB SYST REV, V12
  24. Mehran R, 2011, CIRCULATION, V123, P2736, DOI 10.1161/CIRCULATIONAHA.110.009449
  25. Nakayama Y, 2000, CIRCULATION, V101, P470, DOI 10.1161/01.CIR.101.5.470
  26. Pauca AL, 2001, HYPERTENSION, V38, P932, DOI 10.1161/hy1001.096106
  27. Roman MJ, 2007, HYPERTENSION, V50, P197, DOI 10.1161/HYPERTENSIONAHA.107.089078
  28. Safar ME, 2001, CURR OPIN NEPHROL HY, V10, P257, DOI 10.1097/00041552-200103000-00015
  29. Safar ME, 2011, ATHEROSCLEROSIS, V218, P263, DOI 10.1016/j.atherosclerosis.2011.04.039
  30. Selvaraj S, 2016, J AM COLL CARDIOL, V67, P392, DOI 10.1016/j.jacc.2015.10.084
  31. Serruys PW, 2019, EUROINTERVENTION, V15, pE1090, DOI 10.4244/EIJ-D-19-00202
  32. Shiratsuch H, 2005, AM J SURG, V190, P757, DOI 10.1016/j.amjsurg.2005.07.016
  33. Steppan J, 2011, CARDIOL RES PRACT, V2011, DOI 10.4061/2011/263585
  34. Toyoda K, 2010, STROKE, V41, P1440, DOI 10.1161/STROKEAHA.110.580506
  35. Van Herck JL, 2009, CIRCULATION, V120, P2478, DOI 10.1161/CIRCULATIONAHA.109.872663
  36. Vlachopoulos C, 2010, EUR HEART J, V31, P1865, DOI 10.1093/eurheartj/ehq024
  37. Vranckx P, 2018, LANCET, V392, P940, DOI 10.1016/S0140-6736(18)31858-0
  38. Vranckx P, 2016, EUROINTERVENTION, V12, P1239, DOI 10.4244/EIJY15M11_07
  39. Wallentin L, 2009, NEW ENGL J MED, V361, P1045, DOI 10.1056/NEJMoa0904327
  40. Warren J, 2019, J AM COLL CARDIOL, V73, P2846, DOI 10.1016/j.jacc.2019.03.493
  41. Weber T, 2004, CIRCULATION, V109, P184, DOI 10.1161/01.CIR.0000105767.94169.E3
  42. Weber T, 2005, EUR HEART J, V26, P2657, DOI 10.1093/eurheartj/ehi504
  43. Williams B, 2018, EUR HEART J, V39, P3021, DOI 10.1093/eurheartj/ehy339