DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
NICOLETTI, C. F.
CORTES-OLIVEIRA, C.
NORONHA, N. Y.
PINHEL, M. A. S.
JACOME, A.
MARCHINI, J. S.
CRUJEIRAS, A. B.
NONINO, C. B.
Citação
EUROPEAN JOURNAL OF CLINICAL NUTRITION, v.74, n.9, p.1345-1353, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background/Objectives We aimed to investigate the effects of short-term hypocaloric diet-induced weight loss on DNA methylation profile in leukocytes from women with severe obesity. Methods Eleven women with morbid obesity (age: 36.9 +/- 10.3 years; BMI: 58.5 +/- 10.5 kg/m(2)) were assessed before and after 6 weeks of a hypocaloric dietary intervention. The participants were compared with women of average weight and the same age (age: 36.9 +/- 11.8 years; BMI: 22.5 +/- 1.6 kg/m(2)). Genome-wide DNA methylation analysis was performed in DNA extracted from peripheral blood leukocytes using the Infinium Human Methylation 450 BeadChip assay. Changes (Delta beta) in the methylation level of each CpGs were calculated. A threshold with a minimum value of 10%, p < 0.001, for the significant CpG sites based on Delta beta and a false discovery rate of Results Dietary intervention changed the methylation levels at 16,064 CpG sites. These CpGs sites were related to cancer, cell cycle-related, MAPK, Rap1, and Ras signaling pathways. However, regardless of hypocaloric intervention, a group of 878 CpGs (related to 649 genes) remained significantly altered in obese women when compared with normal-weight women. Pathway enrichment analysis identified genes related to the cadherin and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose deprivation. Conclusion A short-term hypocaloric intervention in patients with severe obesity partially restored the obesity-related DNA methylation pattern. Thus, the full change of obesity-related DNA methylation patterns could be proportional to the weight-loss rate in these patients after dietary interventions.
Palavras-chave
Referências
  1. Abete I, 2015, CURR NEUROVASC RES, V12, P321, DOI 10.2174/1567202612666150731110247
  2. Aronica L, 2017, EPIGENOMICS-UK, V9, P769, DOI 10.2217/epi-2016-0182
  3. Barres R, 2013, CELL REP, V3, P1020, DOI 10.1016/j.celrep.2013.03.018
  4. Bibikova M, 2011, GENOMICS, V98, P288, DOI 10.1016/j.ygeno.2011.07.007
  5. Bostrom AE, 2016, BMC MED GENOMICS, V9, DOI 10.1186/s12920-016-0180-y
  6. Cordero P, 2011, J PHYSIOL BIOCHEM, V67, P463, DOI 10.1007/s13105-011-0084-4
  7. Cortes-Oliveira C, 2017, EUR J CLIN NUTR, V71, P402, DOI 10.1038/ejcn.2016.185
  8. Crujeiras AB, 2017, SCI REP-UK, V7, DOI 10.1038/srep41903
  9. Crujeiras AB, 2019, INT J OBESITY, V43, P176, DOI 10.1038/s41366-018-0065-6
  10. Crujeiras AB, 2017, ENDOCR-RELAT CANCER, V24, P351, DOI 10.1530/ERC-16-0565
  11. Crujeiras AB, 2015, HUM REPROD UPDATE, V21, P249, DOI 10.1093/humupd/dmu060
  12. Dedeurwaerder S, 2011, EPIGENOMICS-UK, V3, P771, DOI [10.2217/EPI.11.105, 10.2217/epi.11.105]
  13. Delgado-Cruzata L, 2015, J NUTR, V145, P783, DOI 10.3945/jn.114.202853
  14. Demerath EW, 2015, HUM MOL GENET, V24, P4464, DOI 10.1093/hmg/ddv161
  15. Drong AW, 2012, CLIN PHARMACOL THER, V92, P707, DOI 10.1038/clpt.2012.149
  16. Dyaczynski M, 2018, ENDOKRYNOL POL, V69, P574, DOI 10.5603/EP.2018.0059
  17. ElGendy K, 2018, BRIT J NUTR, V120, P961, DOI [10.1017/S000711451800243X, 10.1017/s000711451800243x]
  18. Nicoletti CF, 2016, OBES SURG, V26, P603, DOI 10.1007/s11695-015-1802-8
  19. Gillberg L, 2016, DIABETOLOGIA, V59, P799, DOI 10.1007/s00125-015-3852-9
  20. Huang RC, 2015, EPIGENETICS-US, V10, P995, DOI 10.1080/15592294.2015.1080411
  21. Jacobsen SC, 2012, DIABETOLOGIA, V55, P3341, DOI 10.1007/s00125-012-2717-8
  22. Jacobsen SC, 2014, DIABETOLOGIA, V57, P1154, DOI 10.1007/s00125-014-3198-8
  23. Kadayifci FZ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19124055
  24. Li RF, 2018, CELL REP, V22, P624, DOI 10.1016/j.celrep.2017.12.071
  25. Li YY, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-98
  26. Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177
  27. Mansego ML, 2015, INT J MOL SCI, V16, P16816, DOI 10.3390/ijms160816816
  28. Maegawa S, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00607-3
  29. Martin-Nunez GM, 2014, MOL NUTR FOOD RES, V58, P1528, DOI 10.1002/mnfr.201400079
  30. Morcillo S, 2017, CURR ATHEROSCLER REP, V19, DOI 10.1007/s11883-017-0676-8
  31. Nicoletti CF, 2019, BMC MED GENOMICS, V12, DOI 10.1186/s12920-019-0522-7
  32. Nilsson EK, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115186
  33. Parrillo L, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20122983
  34. Ronn T, 2015, HUM MOL GENET, V24, P3792, DOI 10.1093/hmg/ddv124
  35. Ronn T, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003572
  36. Sambias M, 2019, EUR J NUTR, V58, P1971, DOI 10.1007/s00394-018-1750-x
  37. Sayols-Baixeras S, 2017, EPIGENETICS-US, V12, P909, DOI 10.1080/15592294.2017.1363951
  38. Simons MJP, 2013, AGING CELL, V12, P410, DOI 10.1111/acel.12061
  39. Sziraki A, 2018, AGING CELL, V17, DOI 10.1111/acel.12738
  40. Wahl S, 2017, NATURE, V541, P81, DOI 10.1038/nature20784
  41. Zhang NF, 2015, ANIM NUTR, V1, P144, DOI 10.1016/j.aninu.2015.09.002