Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER/PLENUM PUBLISHERS
Autores
SANTANA, Fernanda P. R.
FANTOZZI, Evelyn T.
PRADO, Marco Antonio M.
PRADO, Vania F.
TAVARES-DE-LIMA, Wothan
Citação
INFLAMMATION, v.44, n.4, p.1553-1564, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Acute lung injury induced by intestinal ischemia/reperfusion (I/R) is a relevant clinical condition. Acetylcholine (ACh) and the alpha 7 nicotinic ACh receptor (nAChR alpha-7) are involved in the control of inflammation. Mice with reduced levels of the vesicular ACh transporter (VAChT), a protein responsible for controlling ACh release, were used to test the involvement of cholinergic signaling in lung inflammation due to intestinal I/R. Female mice with reduced levels of VAChT (VAChT-KDHOM) or wild-type littermate controls (WT) were submitted to intestinal I/R followed by 2 h of reperfusion. Mortality, vascular permeability, and recruitment of inflammatory cells into the lung were investigated. Parts of mice were submitted to ovariectomy (OVx) to study the effect of sex hormones or treated with PNU-282,987 (nAChR alpha-7 agonist). A total of 43.4% of VAChT-KDHOM-I/R mice died in the reperfusion period compared to 5.2% of WT I/R mice. The I/R increased lung inflammation in both genotypes. In VAChT-KDHOM mice, I/R increased vascular permeability and decreased the release of cytokines in the lung compared to WT I/R mice. Ovariectomy reduced lung inflammation and permeability compared to non-OVx, but it did not avoid mortality in VAChT-KDHOM-I/R mice. PNU treatment reduced lung permeability, increased the release of proinflammatory cytokines and the myeloperoxidase activity in the lungs, and prevented the increased mortality observed in VAChT-KDHOM mice. Cholinergic signaling is an important component of the lung protector response against intestinal I/R injury. Decreased cholinergic signaling seems to increase pulmonary edema and dysfunctional cytokine release that increased mortality, which can be prevented by increasing activation of nAChR alpha-7.
Palavras-chave
acute lung injury, experimental model, acetylcholine, PNU-282,987, cholinergic anti-inflammatory pathway, intestinal ischemia and reperfusion
Referências
  1. Adib-Conquy M, 2000, AM J RESP CRIT CARE, V162, P1877, DOI 10.1164/ajrccm.162.5.2003058
  2. Aggarwal NR, 2014, AM J PHYSIOL-LUNG C, V306, pL709, DOI 10.1152/ajplung.00341.2013
  3. Bernik TR, 2002, J EXP MED, V195, P781, DOI 10.1084/jem.20011714
  4. Biswas SK, 2009, TRENDS IMMUNOL, V30, P475, DOI 10.1016/j.it.2009.07.009
  5. Boomer JS, 2011, JAMA-J AM MED ASSOC, V306, P2594, DOI 10.1001/jama.2011.1829
  6. Borovikova LV, 2000, NATURE, V405, P458
  7. Bosmans G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01873
  8. Bouras M, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02590
  9. Breithaupt-Faloppa AC, 2013, SHOCK, V40, P203, DOI 10.1097/SHK.0b013e3182a01e24
  10. Cavaillon JM, 2006, CRIT CARE, V10, DOI 10.1186/cc5055
  11. Cavriani G, 2005, SHOCK, V23, P330, DOI 10.1097/01.shk.0000157303.76749.9b
  12. Cribbs SK, 2020, PHYSIOL REV, V100, P603, DOI 10.1152/physrev.00039.2018
  13. de Castro BM, 2009, MOL CELL BIOL, V29, P5238, DOI 10.1128/MCB.00245-09
  14. Fantozzi ET, 2018, J SURG RES, V221, P1, DOI 10.1016/j.jss.2017.07.038
  15. Feng XT, 2021, IMMUNOL CELL BIOL, V99, P206, DOI 10.1111/imcb.12400
  16. Gahring LC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175367
  17. Galle-Treger L, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13202
  18. Geha M, 2017, J IMMUNOL, V199, P2921, DOI 10.4049/jimmunol.1700655
  19. Gwilt CR, 2007, PHARMACOL THERAPEUT, V115, P208, DOI 10.1016/j.pharmthera.2007.05.007
  20. He Y, 2016, J SURG RES, V201, P258, DOI 10.1016/j.jss.2015.10.046
  21. Hotchkiss RS, 2013, LANCET INFECT DIS, V13, P260, DOI 10.1016/S1473-3099(13)70001-X
  22. Iida T, 2015, DIGESTION, V92, P211, DOI 10.1159/000439300
  23. Jana B, 2018, ANN ANAT, V216, P135, DOI 10.1016/j.aanat.2017.11.010
  24. Lips KS, 2007, LIFE SCI, V80, P2263, DOI 10.1016/j.lfs.2007.01.026
  25. Maca J, 2017, RESP CARE, V62, P113, DOI 10.4187/respcare.04716
  26. Norling LV, 2020, P NATL ACAD SCI USA, V117, P9148, DOI 10.1073/pnas.2004241117
  27. Oldenburg WA, 2004, ARCH INTERN MED, V164, P1054, DOI 10.1001/archinte.164.10.1054
  28. Parrish WR, 2008, MOL MED, V14, P567, DOI 10.2119/2008-00079.Parrish
  29. Pereira LM, 2018, BRAIN RES BULL, V140, P411, DOI 10.1016/j.brainresbull.2018.01.012
  30. Pinheiro NM, 2017, FASEB J, V31, P320, DOI 10.1096/fj.201600431R
  31. Pinheiro NM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120441
  32. Prado VF, 2006, NEURON, V51, P601, DOI 10.1016/j.neuron.2006.08.005
  33. Ren C, 2018, INT J BIOL SCI, V14, P748, DOI 10.7150/ijbs.24576
  34. Ricardo-da-Silva FY, 2017, SHOCK, V48, P477, DOI 10.1097/SHK.0000000000000873
  35. Righetti RF, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01021
  36. Rosas-Ballina M, 2011, SCIENCE, V334, P98, DOI 10.1126/science.1209985
  37. Roy A, 2013, FASEB J, V27, P5072, DOI 10.1096/fj.13-238279
  38. Santana FPR, 2019, ECOTOX ENVIRON SAFE, V167, P494, DOI 10.1016/j.ecoenv.2018.10.005
  39. Sekheri M, 2020, P NATL ACAD SCI USA, V117, P7971, DOI 10.1073/pnas.1920193117
  40. Su X, 2010, J IMMUNOL, V184, P401, DOI 10.4049/jimmunol.0901808
  41. Tendler David A, 2003, Semin Gastrointest Dis, V14, P66
  42. Tomlinson GS, 2014, J INFECT DIS, V209, P1055, DOI 10.1093/infdis/jit621
  43. Ward PA, 2012, EMBO MOL MED, V4, P1234, DOI 10.1002/emmm.201201375
  44. Xiao XM, 2004, J PEDIATR SURG, V39, P1828, DOI 10.1016/j.jpedsurg.2004.08.028