Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/46288
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorGIOVANINI, Guilherme-
dc.contributor.authorBARROS, Luciana R. C.-
dc.contributor.authorGAMA, Leonardo R.-
dc.contributor.authorTORTELLI, Tharcisio C.-
dc.contributor.authorRAMOS, Alexandre F.-
dc.date.accessioned2022-04-19T13:12:27Z-
dc.date.available2022-04-19T13:12:27Z-
dc.date.issued2022-
dc.identifier.citationCANCERS, v.14, n.3, article ID 633, 29p, 2022-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/46288-
dc.description.abstractSimple Summary Gene editing technologies reached a turning point toward epigenetic modulation for cancer treatment. Gene networks are complex systems composed of multiple non-trivially coupled elements capable of reliably processing dynamical information from the environment despite unavoidable randomness. However, this functionality is lost when the cells are in a diseased state. Hence, gene-editing-based therapeutic design can be viewed as a gene network dynamics modulation toward a healthy state. Enhancement of this control relies on mathematical models capable of effectively describing the regulation of stochastic gene expression. We use a two-state stochastic model for gene expression to investigate treatment response with a switching target gene. We show the necessity of modulating multiple gene-expression-related processes to reach a heterogeneity-reduced specific response using epigenetic-targeting cancer treatment designs. Our approach can be used as an additional tool for developing epigenetic-targeting treatments. In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.eng
dc.language.isoeng-
dc.publisherMDPIeng
dc.relation.ispartofCancers-
dc.rightsopenAccesseng
dc.subjectepigenetic regulation in cancer treatmenteng
dc.subjectstochastic binary regulation of gene expressioneng
dc.subjecttreatment targeting RKIP levelseng
dc.subjectreduction of heterogeneity of treatment responseeng
dc.subjectgene therapyeng
dc.subjectmulti-drug therapyeng
dc.subject.otherraf kinase inhibitoreng
dc.subject.otherbreast-cancer cellseng
dc.subject.othernf-kappa-beng
dc.subject.othernitric-oxideeng
dc.subject.otherprotein rkipeng
dc.subject.otherprostate-cancereng
dc.subject.othersynergistic cytotoxicityeng
dc.subject.othermesenchymal transitioneng
dc.subject.otheraberrant methylationeng
dc.subject.othersensitizes prostateeng
dc.titleA Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapyeng
dc.typearticleeng
dc.rights.holderCopyright MDPIeng
dc.identifier.doi10.3390/cancers14030633-
dc.identifier.pmid35158901-
dc.subject.wosOncologyeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalGIOVANINI, Guilherme:Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Av Arlindo Bettio 1000, BR-03828000 Sao Paulo, SP, Brazil-
hcfmusp.description.articlenumber633-
hcfmusp.description.issue3-
hcfmusp.description.volume14-
hcfmusp.origemWOS-
hcfmusp.origem.idWOS:000756401500001-
hcfmusp.origem.id2-s2.0-85123441300-
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAbramowitz M, 1972, APPL MATH SERIES, V55eng
hcfmusp.relation.referenceAl-Mulla F, 2011, CANCER RES, V71, P1334, DOI 10.1158/0008-5472.CAN-10-3102eng
hcfmusp.relation.referenceAlizadeh AA, 2015, NAT MED, V21, P846, DOI 10.1038/nm.3915eng
hcfmusp.relation.referenceArfken G.B., 2005, MATH METHODS PHYS, V6eng
hcfmusp.relation.referenceBalazsi G, 2011, CELL, V144, P910, DOI 10.1016/j.cell.2011.01.030eng
hcfmusp.relation.referenceBaritaki S, 2010, CELL CYCLE, V9, P4931, DOI 10.4161/cc.9.24.14229eng
hcfmusp.relation.referenceBeach S, 2008, ONCOGENE, V27, P2243, DOI 10.1038/sj.onc.1210860eng
hcfmusp.relation.referenceBhalla US, 1999, SCIENCE, V283, P381, DOI 10.1126/science.283.5400.381eng
hcfmusp.relation.referenceBonavida B, 2021, CRIT REV ONCOGENESIS, DOI [10.1615/CritRevOncog.2021035853, DOI 10.1615/CRITREVONCOG.2021035853]eng
hcfmusp.relation.referenceBonavida B., 2020, PROGNOSTIC THERAPEUT, DOI [10.1016/C2019-0-00062-3, DOI 10.1016/C2019-0-00062-3]eng
hcfmusp.relation.referenceBonavida Benjamin, 2014, Critical Reviews in Oncogenesis, V19, P431eng
hcfmusp.relation.referenceBonavida Benjamin, 2011, Critical Reviews in Oncogenesis, V16, P211eng
hcfmusp.relation.referenceBrock A, 2015, NAT REV CANCER, V15, P499, DOI 10.1038/nrc3959eng
hcfmusp.relation.referenceBulaklak K, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19505-2eng
hcfmusp.relation.referenceCai WW, 2020, PEERJ, V8, DOI 10.7717/peerj.9952eng
hcfmusp.relation.referenceChatterjee D, 2004, J BIOL CHEM, V279, P17515, DOI 10.1074/jbc.M313816200eng
hcfmusp.relation.referenceCorbit KC, 2003, J BIOL CHEM, V278, P13061, DOI 10.1074/jbc.M210015200eng
hcfmusp.relation.referenceDangi-Garimella S, 2009, EMBO J, V28, P347, DOI 10.1038/emboj.2008.294eng
hcfmusp.relation.referenceDatar Ila, 2014, Critical Reviews in Oncogenesis, V19, P417eng
hcfmusp.relation.referenceDe Castro J., 2020, PROGNOSTIC THERAPEUT, P139, DOI 10.1016/B978-0-12-819612-0.00009-2eng
hcfmusp.relation.referenceDelbruck M., 1940, J CHEM PHYS, V8, P120, DOI [10.1063/1.1750549, DOI 10.1063/1.1750549]eng
hcfmusp.relation.referenceDeng X, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44313-0eng
hcfmusp.relation.referenceDu Y, 2017, ONCOTARGET, V8, P94358, DOI 10.18632/oncotarget.21719eng
hcfmusp.relation.referenceDu Y, 2017, CELL PHYSIOL BIOCHEM, V41, P1135, DOI 10.1159/000464120eng
hcfmusp.relation.referenceFerrell JE, 2016, CELL SYST, V2, P62, DOI 10.1016/j.cels.2016.02.006eng
hcfmusp.relation.referenceFu Z, 2003, J NATL CANCER I, V95, P878, DOI 10.1093/jnci/95.12.878eng
hcfmusp.relation.referenceFu Z, 2006, PROSTATE, V66, P248, DOI 10.1002/pros.20319eng
hcfmusp.relation.referenceFukumura D, 2006, NAT REV CANCER, V6, P521, DOI 10.1038/nrc1910eng
hcfmusp.relation.referenceGalal Y., 2021, SUCCESSES CHALLENGES, P233, DOI 10.1016/B978-0-12-824375-6.00012-6eng
hcfmusp.relation.referenceGama LR, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22040479eng
hcfmusp.relation.referenceGerard C, 2019, J THEOR BIOL, V461, P276, DOI 10.1016/j.jtbi.2018.10.042eng
hcfmusp.relation.referenceGiovanini G, 2020, MATH BIOSCI ENG, V17, P5477, DOI 10.3934/mbe.2020295eng
hcfmusp.relation.referenceGiovannetti E, 2013, CURR PHARM DESIGN, V19, P927, DOI 10.2174/138161213804547268eng
hcfmusp.relation.referenceGuinn MT, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.586726eng
hcfmusp.relation.referenceGuo W, 2012, CANCER INVEST, V30, P703, DOI 10.3109/07357907.2012.732164eng
hcfmusp.relation.referenceHampl V, 1996, CARDIOVASC RES, V31, P55, DOI 10.1016/S0008-6363(95)00172-7eng
hcfmusp.relation.referenceHao CF, 2012, TUMOR BIOL, V33, P1159, DOI 10.1007/s13277-012-0358-7eng
hcfmusp.relation.referenceHays E, 2019, ANTIOXIDANTS-BASEL, V8, DOI 10.3390/antiox8090407eng
hcfmusp.relation.referenceHou WH, 2008, BBA-GENE REGUL MECH, V1779, P195, DOI 10.1016/j.bbagrm.2008.01.006eng
hcfmusp.relation.referenceHuerta-Yepez S, 2004, ONCOGENE, V23, P4993, DOI 10.1038/sj.onc.1207655eng
hcfmusp.relation.referenceInnocentini GCP, 2007, J MATH BIOL, V55, P413, DOI 10.1007/s00285-007-0090-xeng
hcfmusp.relation.referenceIyer-Biswas S, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.031911eng
hcfmusp.relation.referenceJarrett AM, 2020, J CLIN MED, V9, DOI 10.3390/jcm9051314eng
hcfmusp.relation.referenceKim GE, 2017, APPL IMMUNOHISTO M M, V25, P467, DOI 10.1097/PAI.0000000000000323eng
hcfmusp.relation.referenceLabbozzetta M, 2015, ONCOL LETT, V10, P3807, DOI 10.3892/ol.2015.3787eng
hcfmusp.relation.referenceLamiman Kelly, 2014, Critical Reviews in Oncogenesis, V19, P455eng
hcfmusp.relation.referenceLee J, 2014, P NATL ACAD SCI USA, V111, pE364, DOI 10.1073/pnas.1304840111eng
hcfmusp.relation.referenceLee TY, 2016, ONCOTARGET, V7, P23512, DOI 10.18632/oncotarget.8049eng
hcfmusp.relation.referenceLei XH, 2015, INT J CLIN EXP PATHO, V8, P14214eng
hcfmusp.relation.referenceLevine JH, 2013, SCIENCE, V342, P1193, DOI 10.1126/science.1239999eng
hcfmusp.relation.referenceLi DX, 2014, EXP THER MED, V8, P844, DOI 10.3892/etm.2014.1833eng
hcfmusp.relation.referenceLin Kimberly, 2010, Genes Cancer, V1, P409eng
hcfmusp.relation.referenceLorenz K, 2003, NATURE, V426, P574, DOI 10.1038/nature02158eng
hcfmusp.relation.referenceMartinho O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059104eng
hcfmusp.relation.referenceMartinho O, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030769eng
hcfmusp.relation.referenceMarusyk A, 2012, NAT REV CANCER, V12, P323, DOI 10.1038/nrc3261eng
hcfmusp.relation.referenceMichor F, 2015, CELL, V163, P1059, DOI 10.1016/j.cell.2015.11.002eng
hcfmusp.relation.referenceMinoo P, 2006, GUT, V55, DOI 10.1136/gut.2005.082859eng
hcfmusp.relation.referenceMinoo P, 2007, AM J CLIN PATHOL, V127, P820, DOI 10.1309/5D7MM22DAVGDT1R8eng
hcfmusp.relation.referenceMorozova N, 2012, RNA, V18, P1635, DOI 10.1261/rna.032284.112eng
hcfmusp.relation.referencePasqualetti G, 2011, LUNG CANCER, V74, P197, DOI 10.1016/j.lungcan.2011.03.003eng
hcfmusp.relation.referencePECCOUD J, 1995, THEOR POPUL BIOL, V48, P222, DOI 10.1006/tpbi.1995.1027eng
hcfmusp.relation.referencePervin S, 2013, BRIT J CANCER, V108, P848, DOI 10.1038/bjc.2013.40eng
hcfmusp.relation.referencePervin S, 2007, CANCER RES, V67, P289, DOI 10.1158/0008-5472.CAN-05-4623eng
hcfmusp.relation.referencePurvis JE, 2013, CELL, V152, P945, DOI 10.1016/j.cell.2013.02.005eng
hcfmusp.relation.referenceRamos AF, 2010, IET SYST BIOL, V4, P311, DOI 10.1049/iet-syb.2010.0058eng
hcfmusp.relation.referenceRamos A.F., 2020, PROGNOSTIC THERAPEUT, P257, DOI [10.1016/b978-0-12-819612-0.00014-6, DOI 10.1016/B978-0-12-819612-0.00014-6]eng
hcfmusp.relation.referenceRamos AF, 2019, J CHEM PHYS, V151, DOI 10.1063/1.5105361eng
hcfmusp.relation.referenceRapozzi V, 2015, REDOX BIOL, V6, P311, DOI 10.1016/j.redox.2015.07.015eng
hcfmusp.relation.referenceRapozzi V, 2013, NITRIC OXIDE-BIOL CH, V30, P26, DOI 10.1016/j.niox.2013.01.002eng
hcfmusp.relation.referenceRen G, 2012, CANCER RES, V72, P3091, DOI 10.1158/0008-5472.CAN-11-3546eng
hcfmusp.relation.referenceRicciardi S, 2010, CHEMOTHERAPY, V56, P303, DOI 10.1159/000320031eng
hcfmusp.relation.referenceSchuierer MM, 2004, CANCER RES, V64, P5186, DOI 10.1158/0008-5472.CAN-03-3861eng
hcfmusp.relation.referenceShahrezaei V, 2008, P NATL ACAD SCI USA, V105, P17256, DOI 10.1073/pnas.0803850105eng
hcfmusp.relation.referenceShvartsur A, 2017, J EXP CLIN CANC RES, V36, DOI 10.1186/s13046-017-0535-zeng
hcfmusp.relation.referenceThakore PI, 2016, NAT METHODS, V13, P127, DOI [10.1038/NMETH.3733, 10.1038/nmeth.3733]eng
hcfmusp.relation.referenceTrakul N, 2005, J BIOL CHEM, V280, P24931, DOI 10.1074/jbc.M413929200eng
hcfmusp.relation.referenceWalker Evan J, 2011, For Immunopathol Dis Therap, V2, P195eng
hcfmusp.relation.referenceWei H, 2017, ONCOL LETT, V13, P1866, DOI 10.3892/ol.2017.5617eng
hcfmusp.relation.referenceWelch DR, 2016, CANCER RES, V76, P4, DOI 10.1158/0008-5472.CAN-15-3024eng
hcfmusp.relation.referenceWink DA, 2008, NITRIC OXIDE-BIOL CH, V19, P65, DOI 10.1016/j.niox.2008.05.003eng
hcfmusp.relation.referenceWishart DS, 2018, NUCLEIC ACIDS RES, V46, pD1074, DOI 10.1093/nar/gkx1037eng
hcfmusp.relation.referenceWu XH, 2016, BBA-GEN SUBJECTS, V1860, P384, DOI 10.1016/j.bbagen.2015.06.009eng
hcfmusp.relation.referenceYan XY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090846eng
hcfmusp.relation.referenceYesilkanal AE, 2021, J BIOL CHEM, V297, DOI 10.1016/j.jbc.2021.101128eng
hcfmusp.relation.referenceYesilkanal Ali E., 2014, Critical Reviews in Oncogenesis, V19, P447eng
hcfmusp.relation.referenceYesilkanal AE, 2021, ELIFE, V10, DOI 10.7554/eLife.59696eng
hcfmusp.relation.referenceYesilkanal AE, 2018, CANCERS, V10, DOI 10.3390/cancers10090306eng
hcfmusp.relation.referenceYeung K, 1999, NATURE, V401, P173, DOI 10.1038/43686eng
hcfmusp.relation.referenceYeung KC, 2001, MOL CELL BIOL, V21, P7207, DOI 10.1128/MCB.21.21.7207-7217.2001eng
hcfmusp.relation.referenceYousuf S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092478eng
hcfmusp.relation.referenceYun JU, 2011, EMBO J, V30, P4500, DOI 10.1038/emboj.2011.312eng
hcfmusp.relation.referenceZaravinos A, 2018, CANCERS, V10, DOI 10.3390/cancers10090287eng
hcfmusp.relation.referenceZhao DQ, 2013, ONCOL REP, V30, P304, DOI 10.3892/or.2013.2464eng
hcfmusp.relation.referenceZhao Jinming, 2014, Critical Reviews in Oncogenesis, V19, P497eng
hcfmusp.relation.referenceZou QY, 2016, ARCH BIOCHEM BIOPHYS, V610, P25, DOI 10.1016/j.abb.2016.09.007eng
dc.description.indexPubMedeng
dc.identifier.eissn2072-6694-
hcfmusp.citation.scopus3-
hcfmusp.scopus.lastupdate2024-04-12-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - HC/ICESP
Instituto do Câncer do Estado de São Paulo - HC/ICESP

Artigos e Materiais de Revistas Científicas - LIM/24
LIM/24 - Laboratório de Oncologia Experimental

Artigos e Materiais de Revistas Científicas - ODS/03
ODS/03 - Saúde e bem-estar


Files in This Item:
File Description SizeFormat 
art_GIOVANINI_A_Stochastic_Binary_Model_for_the_Regulation_of_2022.PDFpublishedVersion (English)1.6 MBAdobe PDFThumbnail
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.