The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess-The CAPISCO International Expert Panel

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
JENSTERLE, Mojca
HERMAN, Rok
JANEZ, Andrej
MAHMEED, Wael Al
AL-RASADI, Khalid
AL-ALAWI, Kamila
BANACH, Maciej
BANERJEE, Yajnavalka
CERIELLO, Antonio
CESUR, Mustafa
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.13, article ID 7326, 15p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding severity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic-pituitary-adrenal (HPA) axis has been identified as one of the most critical endocrine targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that might significantly impact outcomes after infection. Herein we review the rationale for glucocorticoid use in the setting of COVID-19 and emphasize the need to have a low index of suspicion for glucocorticoid-induced adrenal insufficiency, adjusting for the glucocorticoid formulation used, dose, treatment duration, and underlying health problems. We also address several additional mechanisms that may cause HPA axis dysfunction, including critical illness-related corticosteroid insufficiency, the direct cytopathic impacts of SARS-CoV-2 infection on the adrenals, pituitary, and hypothalamus, immune-mediated inflammations, small vessel vasculitis, microthrombotic events, the resistance of cortisol receptors, and impaired post-receptor signaling, as well as the dissociation of ACTH and cortisol regulation. We also discuss the increased risk of infection and more severe illness in COVID-19 patients with pre-existing disorders of the HPA axis, from insufficiency to excess. These insights into the complex regulation of the HPA axis reveal how well the body performs in its adaptive survival mechanism during a severe infection, such as SARS-CoV-2, and how many parameters might disbalance the outcomes of this adaptation.
Palavras-chave
SARS-CoV-2, glucocorticoids, hypothalamic-pituitary-adrenal axis, hypercortisolism, adrenal insufficiency
Referências
  1. Ahmadi I, 2022, INT J ENDOCRINOL, V2022, DOI 10.1155/2022/4280691
  2. Akbas EM, 2021, BIOMED PAP, V165, P1, DOI 10.5507/bp.2021.011
  3. Alexaki VI, 2021, HORM METAB RES, V53, P9, DOI 10.1055/a-1300-2550
  4. Almeida MQ, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e2022
  5. Alzahrani AS, 2021, ENDOCR PRACT, V27, P83, DOI 10.1016/j.eprac.2020.10.014
  6. Annane D, 2000, JAMA-J AM MED ASSOC, V283, P1038, DOI 10.1001/jama.283.8.1038
  7. Annane D, 2017, INTENS CARE MED, V43, P1751, DOI 10.1007/s00134-017-4919-5
  8. Annane D, 2017, INTENS CARE MED, V43, P1781, DOI 10.1007/s00134-017-4914-x
  9. [Anonymous], 2020, PEDIATR MED RODZ, V16, P9, DOI 10.15557/PiMR.2020.0003
  10. Awasthi S, 2021, CELL DEATH DISCOV, V7, DOI 10.1038/s41420-021-00429-9
  11. BATEMAN A, 1989, ENDOCR REV, V10, P92, DOI 10.1210/edrv-10-1-92
  12. Belaya Z, 2021, ENDOCRINE, V72, P12, DOI 10.1007/s12020-021-02674-5
  13. Bellastella G, 2020, J ENDOCRINOL INVEST, V43, P1169, DOI 10.1007/s40618-020-01311-8
  14. Beretta F, 2020, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.00554
  15. Berlinska A, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.711612
  16. Berton AM, 2021, J ENDOCRINOL INVEST, V44, P873, DOI 10.1007/s40618-020-01325-2
  17. Bornstein SR, 2008, TRENDS ENDOCRIN MET, V19, P175, DOI 10.1016/j.tem.2008.01.009
  18. Broersen LHA, 2015, J CLIN ENDOCR METAB, V100, P2171, DOI 10.1210/jc.2015-1218
  19. Bryce C, 2021, MODERN PATHOL, V34, P1456, DOI 10.1038/s41379-021-00793-y
  20. Carosi Giulia, 2021, Journal of Clinical Endocrinology & Metabolism, V106, pE1354, DOI 10.1210/clinem/dgaa793
  21. Casadevall A, 2020, P NATL ACAD SCI USA, V117, P30009, DOI 10.1073/pnas.2021128117
  22. Chien JY, 2005, CRIT CARE MED, V33, P1688, DOI 10.1097/01.CCM.0000171183.79525.6B
  23. Chifu I, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.705214
  24. CLARKE SA, 2021, J CLIN ENDOCR METAB, V106, P2208, DOI 10.1210/CLINEM/DGAB349
  25. Clarke SA, 2022, ENDOCRINOLOGY, V163, DOI 10.1210/endocr/bqab203
  26. Das L, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.645787
  27. Dineen R, 2019, THER ADV ENDOCRINOL, V10, DOI 10.1177/2042018819848218
  28. Edwards Christopher, 2021, Journal of Clinical Endocrinology & Metabolism, V106, P622, DOI 10.1210/clinem/dgaa874
  29. Espinosa G, 2003, MEDICINE, V82, P106, DOI 10.1097/00005792-200303000-00005
  30. Ferrau F, 2021, J ENDOCRINOL INVEST, V44, P693, DOI 10.1007/s40618-020-01384-5
  31. Gogali A, 2021, EUR RESPIR J, V57, DOI 10.1183/13993003.00224-2021
  32. Graf A, 2021, PITUITARY, V24, P262, DOI 10.1007/s11102-020-01106-3
  33. Guarner J, 2008, MODERN PATHOL, V21, P1113, DOI 10.1038/modpathol.2008.98
  34. Guarnotta V, 2021, REV ENDOCR METAB DIS, V22, P703, DOI 10.1007/s11154-020-09598-x
  35. Guven M, 2021, SAO PAULO MED J, V139, P398, DOI [10.1590/1516-3180.2020.0722.R1.2302021, 10.1590/1516-3180.2020.0722.r1.2302021]
  36. Hanley B, 2020, LANCET MICROBE, V1, pE245, DOI 10.1016/S2666-5247(20)30115-4
  37. Horby P, 2021, NEW ENGL J MED, V384, P693, DOI [10.1056/NEJMoa2021436, 10.1056/NEJMoa2022926]
  38. Isidori AM, 2018, LANCET DIABETES ENDO, V6, P173, DOI 10.1016/S2213-8587(17)30398-4
  39. Iuga AC, 2020, ARCH PATHOL LAB MED, V144, P1159, DOI 10.5858/arpa.2020-0248-LE
  40. Kaiser UB, 2020, J CLIN ENDOCR METAB, V105, DOI 10.1210/clinem/dgaa148
  41. Katznelson L, 2021, PITUITARY, V24, P143, DOI 10.1007/s11102-021-01130-x
  42. Lamontagne F, 2020, BMJ-BRIT MED J, V370, DOI 10.1136/bmj.m3379
  43. Landolf KM, 2022, PHARMACOTHERAPY, V42, P71, DOI 10.1002/phar.2637
  44. Laugesen K, 2021, EUR J ENDOCRINOL, V184, pR111, DOI 10.1530/EJE-20-1199
  45. Leow MKS, 2005, CLIN ENDOCRINOL, V63, P197, DOI 10.1111/j.1365-2265.2005.02325.x
  46. Leyendecker P, 2021, EUR RADIOL, V31, P895, DOI 10.1007/s00330-020-07226-5
  47. Li DF, 2021, J CLIN ENDOCR METAB, V106, pE2469, DOI 10.1210/clinem/dgab334
  48. Li JB, 2021, BMC INFECT DIS, V21, DOI 10.1186/s12879-021-06548-z
  49. Luo MH, 2021, ANN TRANSL MED, V9, DOI 10.21037/atm-21-1783
  50. Machado Iza F R, 2021, J Clin Endocrinol Metab, DOI 10.1210/clinem/dgab557
  51. Mao YF, 2021, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.593179
  52. Marazuela M, 2020, REV ENDOCR METAB DIS, V21, P495, DOI 10.1007/s11154-020-09569-2
  53. Marik PE, 2013, NEW ENGL J MED, V369, P480, DOI 10.1056/NEJMc1306703
  54. Martino M, 2021, J ENDOCRINOL INVEST, V44, P1075, DOI 10.1007/s40618-020-01422-2
  55. Mung SM, 2021, CLIN MED, V21, pE499, DOI 10.7861/clinmed.2021-0200
  56. NATARAJAN R, 1989, ENDOCRINOLOGY, V125, P3084, DOI 10.1210/endo-125-6-3084
  57. National Institutes of Health COVID-19 Treatment Guidelines Panel, COR DIS 2019 COVID 1
  58. Pal R, 2020, J ENDOCRINOL INVEST, V43, P1027, DOI 10.1007/s40618-020-01276-8
  59. Pal R, 2020, DIABETES METAB SYND, V14, P767, DOI 10.1016/j.dsx.2020.05.050
  60. Pal R, 2020, ENDOCRINE, V68, P251, DOI 10.1007/s12020-020-02325-1
  61. Catalan IP, 2022, J MED VIROL, V94, P205, DOI 10.1002/jmv.27296
  62. PICCIOLI A, 1994, J ENDOCRINOL INVEST, V17, P821, DOI 10.1007/BF03347786
  63. Pinzon MA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0252057
  64. Piticchio T, 2021, J ENDOCRINOL INVEST, V44, P1553, DOI 10.1007/s40618-020-01486-0
  65. Pivonello R, 2020, LANCET DIABETES ENDO, V8, P654, DOI 10.1016/S2213-8587(20)30215-1
  66. Presotto F, 2005, EUR J ENDOCRINOL, V153, P507, DOI 10.1530/eje.1.02002
  67. Prete A, 2021, BMJ-BRIT MED J, V374, DOI 10.1136/bmj.n1380
  68. Puig-Domingo M, 2021, ENDOCRINE, V72, P301, DOI 10.1007/s12020-021-02734-w
  69. Ramon I, 2013, J CLIN ENDOCR METAB, V98, P3179, DOI 10.1210/jc.2012-4300
  70. Ranjbar K, 2021, BMC INFECT DIS, V21, DOI 10.1186/s12879-021-06045-3
  71. Rhea EM, 2021, NAT NEUROSCI, V24, P368, DOI 10.1038/s41593-020-00771-8
  72. Rhee EJ, 2020, ENDOCRINOL METAB, V35, P197, DOI 10.3803/EnM.2020.35.2.197
  73. Sabbadin C, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.805647
  74. Salzano C, 2021, MEDICINA-LITHUANIA, V57, DOI 10.3390/medicina57101087
  75. Santana MF, 2020, AM J TROP MED HYG, V103, P1604, DOI 10.4269/ajtmh.20-0787
  76. Serban AL, 2021, J ENDOCRINOL INVEST, V44, P1335, DOI 10.1007/s40618-020-01419-x
  77. Siejka A, 2021, AM J PHYSIOL-ENDOC M, V320, pE784, DOI 10.1152/ajpendo.00061.2021
  78. Smans LCCJ, 2013, EUR J ENDOCRINOL, V168, P609, DOI 10.1530/EJE-12-0879
  79. Song Y, 2020, INT J ANTIMICROB AG, V56, DOI 10.1016/j.ijantimicag.2020.106080
  80. SONI A, 1995, AM J MED, V98, P266, DOI 10.1016/S0002-9343(99)80373-8
  81. Sterne JAC, 2020, JAMA-J AM MED ASSOC, V324, P1330, DOI 10.1001/jama.2020.17023
  82. Tan T, 2020, LANCET DIABETES ENDO, V8, P659, DOI 10.1016/S2213-8587(20)30216-3
  83. Teblick A, 2022, J CLIN ENDOCR METAB, V107, P2057, DOI 10.1210/clinem/dgac201
  84. Tresoldi AS, 2020, J CLIN ENDOCR METAB, V105, P418, DOI 10.1210/clinem/dgz006
  85. Vakhshoori M, 2021, INT J ENDOCRINOL, V2021, DOI 10.1155/2021/2271514
  86. van de Veerdonk FL, 2022, NAT MED, V28, P39, DOI 10.1038/s41591-021-01643-9
  87. Vassiliadi DA, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222111473
  88. Veronese N, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00170
  89. Vogel F, 2022, REV ENDOCR METAB DIS, V23, P233, DOI 10.1007/s11154-021-09670-0
  90. Wei L, 2010, BIOCHEM CELL BIOL, V88, P723, DOI 10.1139/O10-022
  91. Wheatland R, 2004, MED HYPOTHESES, V63, P855, DOI 10.1016/j.mehy.2004.04.009
  92. Wong DWL, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10081900
  93. Wu CM, 2020, JAMA INTERN MED, V180, P934, DOI 10.1001/jamainternmed.2020.0994
  94. Yang RX, 2021, INT J BIOL SCI, V17, P1530, DOI 10.7150/ijbs.58695
  95. Yuno A, 2021, ENDOCR J, V68, P477, DOI 10.1507/endocrj.EJ20-0613