Three and two-dimensional cardiac mechanics by speckle tracking are predictors of outcomes in chagas heart disease

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Citação
SCIENTIFIC REPORTS, v.12, n.1, article ID 12237, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chagas disease (CD) is a neglected infectious disease associated with early mortality and substantial disability. Three-dimensional speckle tracking (3D STE) may play a role in the evaluation of CD. We aim to characterize new echocardiographic variables in patients with CD and to assess the hypothesis that 3D STE may predict outcomes. Seventy-two patients with CD were included. Clinical and conventional 2D and 3D STE analysis were performed. Patients were followed up for 60 months. Clinical events were defined as hospitalization for heart failure, complex ventricular arrhythmias, heart transplant and all-cause death. Seventy-two patients were recruited and enrolled in three groups: left ventricular ejection fraction (LVEF) < 0.40 (N = 22; reduced LVEF or rLVEF); 0.40 <= LVEF <= 0.50 (N = 10; mildly reduced LVEF or mrLVEF) and LVEF > 0.50 (N = 30; preserved LVEF or pLVEF). After a Cox model analysis, the top predictors of composite endpoints were 2D LV global longitudinal strain (GLS) <= - 11.3% (AUC = 0.87), 2D LV global circumferential strain (GCS) <= - 10.1% (AUC = 0.79), 3D LV GLS <= - 13% (AUC = 0.82), 3D LV area strain <= - 16% (AUC = 0.81) and right ventricle (RV) GLS <= - 17.2% (AUC = 0.78). Patients with CD and mrLVEF were morphologically similar to the rLVEF patients despite the benign evolution as the pLVEF group. RV GLS, 2D LV GLS, 2D LV GCS, 3D LV GLS, and 3D LV area strain are strong predictors of 60 months outcomes in patients with CD.
Palavras-chave
Referências
  1. Acquatella H, 2018, J AM SOC ECHOCARDIOG, V31, P3, DOI 10.1016/j.echo.2017.10.019
  2. Altaie S, 2018, ESC HEART FAIL, V5, P1008, DOI 10.1002/ehf2.12353
  3. Amundsen BH, 2006, J AM COLL CARDIOL, V47, P789, DOI 10.1016/j.jacc.2005.10.040
  4. Andrade JP., 2011, ARQ BRAS CARDIOL, V97, P1, DOI [10.1590/S0066-782X2011001200021, DOI 10.1590/S0066-782X2011001200021]
  5. Barros MVL, 2016, J AM SOC ECHOCARDIOG, V29, P368, DOI 10.1016/j.echo.2015.12.008
  6. Bocchi EA, 2017, J AM COLL CARDIOL, V70, P1510, DOI 10.1016/j.jacc.2017.08.004
  7. Bocchi EA, 2013, J AM COLL CARDIOL, V62, P949, DOI 10.1016/j.jacc.2013.06.013
  8. Chagas C., 1909, MEM I OSVALDO CRUZ, V811, P1
  9. Echeverria LE, 2020, ECHOCARDIOGR-J CARD, V37, P429, DOI 10.1111/echo.14603
  10. Ersboll M, 2013, J AM COLL CARDIOL, V61, P2365, DOI 10.1016/j.jacc.2013.02.061
  11. Garcia-Alvarez A, 2011, J CARD FAIL, V17, P1028, DOI 10.1016/j.cardfail.2011.08.007
  12. Garzon SAC., 1998, J AM COLL CARDIOL, V31, p107C
  13. Gomes VAM, 2016, J AM SOC ECHOCARDIOG, V29, P679, DOI 10.1016/j.echo.2016.03.007
  14. Higuchi ML., 2022, SAO PAULO MED J, V195, P113
  15. Hotta VT, 2017, EUR HEART J-CARD IMG, V18, P378, DOI 10.1093/ehjci/jew214
  16. Houard L, 2019, JACC-CARDIOVASC IMAG, V12, P2373, DOI 10.1016/j.jcmg.2018.11.028
  17. Issa VS, 2010, CIRC-HEART FAIL, V3, P82, DOI 10.1161/CIRCHEARTFAILURE.109.882035
  18. Lang RM, 2015, J AM SOC ECHOCARDIOG, V28, P1, DOI 10.1016/j.echo.2014.10.003
  19. Macedo CT, 2015, IJC HEART VASC, V8, P75, DOI 10.1016/j.ijcha.2015.05.007
  20. MADY C, 1984, ANGIOLOGY, V35, P755, DOI 10.1177/000331978403501201
  21. Medvedofsky D, 2018, JACC-CARDIOVASC IMAG, V11, P1569, DOI 10.1016/j.jcmg.2017.08.023
  22. Mizuguchi Y, 2008, J AM SOC ECHOCARDIOG, V21, P1138, DOI 10.1016/j.echo.2008.07.016
  23. Mocelin AO, 2005, EUR J HEART FAIL, V7, P869, DOI 10.1016/j.ejheart.2004.10.014
  24. Nunes MCP, 2018, EUR HEART J-CARD IMG, V19, P459, DOI 10.1093/ehjci/jex154
  25. Nunes MDP, 2008, INT J CARDIOL, V127, P372, DOI 10.1016/j.ijcard.2007.06.012
  26. Nunes MDP, 2010, REV ESP CARDIOL, V63, P788, DOI 10.1016/S0300-8932(10)70181-0
  27. Rassi A, 2007, CIRCULATION, V115, P1101, DOI 10.1161/CIRCULATIONAHA.106.627265
  28. Rassi A, 2006, NEW ENGL J MED, V355, P799, DOI 10.1056/NEJMoa053241
  29. Romano MMD., 2016, J AM SOC ECHOCARDIOG, V29, P679, DOI [10.1016/j.echo.2016.03.007, DOI 10.1016/J.ECHO.2016.03.007]
  30. Saraiva RM, 2020, J AM SOC ECHOCARDIOG, V33, P1363, DOI 10.1016/j.echo.2020.06.003
  31. Tassi EM, 2014, ARQ BRAS CARDIOL, V102, P456, DOI 10.5935/abc.20140052
  32. Torreao JA, 2015, J CARDIOVASC MAGN R, V17, DOI 10.1186/s12968-015-0200-7
  33. Truong VT, 2019, J AM SOC ECHOCARDIOG, V32, P1586, DOI 10.1016/j.echo.2019.07.012
  34. Viotti RJ, 2004, HEART, V90, P655, DOI 10.1136/hrt.2003.018960