Bone Marrow Cells Improve Coronary Flow Reserve in Ischemic Nonrevascularized Myocardium

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
JACC-CARDIOVASCULAR IMAGING, v.15, n.5, p.812-824, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES This study investigated whether intramyocardial bone marrow-derived hematopoietic progenitor cells (BMCs) increase coronary flow reserve (CFR) in ischemic myocardial regions where direct revascularization was unsuitable. BACKGROUND Patients with diffuse coronary artery disease frequently undergo incomplete myocardial revascularization, which increases their risk for future adverse cardiovascular outcomes. The residual regional ischemia related to both untreated epicardial lesions and small vessel disease usually contributes to the disease burden. METHODS The MiHeart/IHD study randomized patients with diffuse coronary artery disease undergoing incomplete coronary artery bypass grafting to receive BMCs or placebo in ischemic myocardial regions. After the procedure, 78 patients underwent cardiovascular magnetic resonance (CMR) at 1, 6, and 12 months and were included in this cardiac magnetic resonance substudy with perfusion quantification. Segments were classified as target (injected), adjacent (surrounding the injection site), and remote from injection site. RESULTS Of 1,248 segments, 269 were target (22%), 397 (32%) adjacent, and 582 (46%) remote. The target had significantly lower CFR at baseline (1.40 +/- 0.79 vs 1.64 +/- 0.89 in adjacent and 1.79 +/- 0.79 in remote; both P < 0.05). BMCs significantly increased CFR in target and adjacent segments at 6 and 12 months compared with placebo. In target regions, there was a progressive treatment effect (27.1% at 6 months, P = 0.037, 42.2% at 12 months, P = 0.001). In the adjacent segments, CFR increased by 21.8% (P = 0.023) at 6 months, which persisted until 12 months (22.6%; P = 0.022). Remote segments in both the BMC and placebo groups experienced similar improvements in CFR (not significant at 12 months compared with baseline). CONCLUSIONS BMCs, injected in severely ischemic regions unsuitable for direct revascularization, led to the largest CFR improvements, which progressed up to 12 months, compared with smaller but persistent CFR changes in adjacent and no improvement in remote segments. (J Am Coll Cardiol Img 2022;15:812-824) (c) 2022 The Authors.
Palavras-chave
bone marrow-derived hematopoietic progenitor cells, cardiac magnetic resonance, coronary artery bypass graft, coronary artery disease, coronary flow reserve
Referências
  1. Aikawa T, 2019, CARDIOVASC RES, V115, P119, DOI 10.1093/cvr/cvy169
  2. Cogle CR, 2014, CIRC RES, V115, P867, DOI 10.1161/CIRCRESAHA.115.304353
  3. CZERNIN J, 1993, CIRCULATION, V88, P62, DOI 10.1161/01.CIR.88.1.62
  4. Fadini GP, 2012, CIRC RES, V110, P624, DOI 10.1161/CIRCRESAHA.111.243386
  5. Garcia S, 2013, J AM COLL CARDIOL, V62, P1421, DOI 10.1016/j.jacc.2013.05.033
  6. Gould K Lance, 2015, Circ Cardiovasc Imaging, V8, DOI 10.1161/CIRCIMAGING.114.003099
  7. Head SJ, 2014, EUR HEART J, V35, P2821, DOI 10.1093/eurheartj/ehu213
  8. Ingram DA, 2004, BLOOD, V104, P2752, DOI 10.1182/blood-2004-04-1396
  9. Jerosch-Herold M, 2002, MED PHYS, V29, P886, DOI 10.1118/1.1473135
  10. Jerosch-Herold M, 2010, J CARDIOVASC MAGN R, V12, DOI 10.1186/1532-429X-12-57
  11. Jimenez-Quevedo P, 2014, CIRC RES, V115, P950, DOI 10.1161/CIRCRESAHA.115.303463
  12. Karantalis V, 2014, CIRC RES, V114, P1302, DOI 10.1161/CIRCRESAHA.114.303180
  13. Klinke V, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-55
  14. Kramer CM, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-91
  15. Liu C, 2014, J NUCL MED, V55, P1573, DOI 10.2967/jnumed.114.144550
  16. Losordo DW, 2011, CIRC RES, V109, P428, DOI 10.1161/CIRCRESAHA.111.245993
  17. Nguyen PK, 2016, JAMA CARDIOL, V1, P831, DOI 10.1001/jamacardio.2016.2225
  18. Schuleri KH, 2008, AM J PHYSIOL-HEART C, V294, pH2002, DOI 10.1152/ajpheart.00762.2007
  19. Stamm C, 2007, J THORAC CARDIOV SUR, V133, P717, DOI 10.1016/j.jtcvs.2006.08.077
  20. Suncion VY, 2014, CIRC RES, V114, P1292, DOI 10.1161/CIRCRESAHA.114.302854
  21. Taqueti VR, 2015, CIRCULATION, V131, P19, DOI 10.1161/CIRCULATIONAHA.114.011939
  22. TREASURE CB, 1993, CIRCULATION, V87, P86, DOI 10.1161/01.CIR.87.1.86
  23. Tse HF, 2007, EUR HEART J, V28, P2998, DOI 10.1093/eurheartj/ehm485
  24. Tura BR, 2007, TRIALS, V8, DOI 10.1186/1745-6215-8-2
  25. UREN NG, 1994, NEW ENGL J MED, V330, P1782, DOI 10.1056/NEJM199406233302503
  26. van de Hoef TP, 2014, CIRC-CARDIOVASC INTE, V7, P301, DOI 10.1161/CIRCINTERVENTIONS.113.001049
  27. van Ramshorst J, 2009, JAMA-J AM MED ASSOC, V301, P1997, DOI 10.1001/jama.2009.685
  28. Vieira RD, 2012, CIRCULATION, V126, pS158, DOI 10.1161/CIRCULATIONAHA.111.084236
  29. Wang SH, 2010, CARDIOLOGY, V117, P140, DOI 10.1159/000320217
  30. Wojakowski W, 2017, CIRC RES, V120, P670, DOI 10.1161/CIRCRESAHA.116.309009
  31. Zhao Q, 2011, EXPERT OPIN BIOL TH, V11, P1569, DOI 10.1517/14712598.2011.616491