Air Pollution's Impact on Cardiac Remodeling in an Experimental Model of Chagas Cardiomyopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, v.12, article ID 830761, 11p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundChagas disease is characterized by intense myocardial fibrosis stimulated by the exacerbated production of inflammatory cytokines, oxidative stress, and apoptosis. Air pollution is a serious public health problem and also follows this same path. Therefore, air pollution might amplify the inflammatory response of Chagas disease and increase myocardial fibrosis. MethodsWe studied groups of Trypanosoma cruzi infected Sirius hamsters (Chagas=CH and Chagas exposed to pollution=CH+P) and 2 control groups (control healthy animals=CT and control exposed to pollution=CT+P). We evaluated acute phase (60 days post infection) and chronic phase (10 months). Echocardiograms were performed to assess left ventricular systolic and diastolic diameter, in addition to ejection fraction. Interstitial collagen was measured by morphometry in picrosirius red staining tissue. The evaluation of inflammation was performed by gene and protein expression of cytokines IL10, IFN-gamma, and TNF; oxidative stress was quantified by gene expression of NOX1, MnSOD, and iNOS and by analysis of reactive oxygen species; and apoptosis was performed by gene expression of BCL2 and Capsase3, in addition to TUNEL analysis. ResultsChagas groups had increased collagen deposition mainly in the acute phase, but air pollution did not increase this deposition. Also, Chagas groups had lower ejection fraction in the acute phase (p = 0.002) and again air pollution did not worsen ventricular function or dilation. The analysis of the inflammation and oxidative stress pathways were also not amplified by air pollution. Apoptosis analysis showed increased expression of BCL2 and Caspase3 genes in chagasic groups in the acute phase, with a marginal p of 0.054 in BCL2 expression among infected groups, and TUNEL technique showed amplified of apoptotic cells by pollution among infected groups. ConclusionsA possible modulation of the apoptotic pathway was observed, inferring interference from air pollution in this pathway. However, it was not enough to promote a greater collagen deposition, or worsening ventricular function or dilation caused by air pollution in this model of Chagas cardiomyopathy.
Palavras-chave
Chagas disease, air pollution, myocardial fibrosis, cardiomyopathy, remodeling
Referências
  1. Alvarez-Hernandez DA, 2020, THER ADV INFECT DIS, V7, DOI 10.1177/2049936120966449
  2. Armstrong W.F., 2010, FEIGENBAUMS ECHOCARD
  3. Azevedo PS, 2016, ARQ BRAS CARDIOL, V106, P62, DOI 10.5935/abc.20160005
  4. Barizon GC, 2020, J NUCL CARDIOL, V27, P434, DOI 10.1007/s12350-018-1290-z
  5. Bourdrel T, 2017, ARCH CARDIOVASC DIS, V110, P634, DOI 10.1016/j.acvd.2017.05.003
  6. Brazao V, 2015, J PINEAL RES, V59, P488, DOI 10.1111/jpi.12280
  7. Carbajosa S, 2017, ONCOTARGET, V8, P17551, DOI 10.18632/oncotarget.14886
  8. Chagas Carlos, 1909, Memorias do Instituto Oswaldo Cruz, V1
  9. Chen C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225307
  10. CONCEA, 2016, MIN CIIENC TECN IN C
  11. Cunha-Neto E, 1998, BRAZ J MED BIOL RES, V31, P133, DOI 10.1590/S0100-879X1998000100018
  12. Cunha-Neto E, 2005, AM J PATHOL, V167, P305, DOI 10.1016/S0002-9440(10)62976-8
  13. Davoodabadi Z, 2019, ARYA ATHEROSCLER, V15, P161, DOI 10.22122/arya.v15i4.1834
  14. de Brito JM, 2018, SCI TOTAL ENVIRON, V628-629, P1223, DOI 10.1016/j.scitotenv.2018.02.019
  15. de Oliveira-Fonoff AM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176084
  16. Fernandes F, 2012, J CARD FAIL, V18, P654, DOI 10.1016/j.cardfail.2012.06.419
  17. Lidani KCF, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00166
  18. Gray SP, 2016, ARTERIOSCL THROM VAS, V36, P295, DOI 10.1161/ATVBAHA.115.307012
  19. Guido MC, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/5343972
  20. Holscher C, 2000, INFECT IMMUN, V68, P4075, DOI 10.1128/IAI.68.7.4075-4083.2000
  21. Kim KE, 2016, LIFE SCI, V152, P126, DOI 10.1016/j.lfs.2016.03.039
  22. Li XL, 2017, BIOCHEM BIOPH RES CO, V488, P224, DOI 10.1016/j.bbrc.2017.05.047
  23. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  24. Mendonca AAS, 2019, LIFE SCI, V230, P141, DOI 10.1016/j.lfs.2019.05.059
  25. Miller MR, 2020, CARDIOVASC RES, V116, P279, DOI 10.1093/cvr/cvz228
  26. Moreira AR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228393
  27. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011, GUIDE CARE USE LAB A, DOI 10.17226/12910
  28. Novaes RD, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/7385639
  29. Novaes RD, 2017, ACTA TROP, V170, P8, DOI 10.1016/j.actatropica.2017.02.012
  30. Paiva CN, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1006928
  31. Rao XQ, 2018, ANTIOXID REDOX SIGN, V28, P797, DOI 10.1089/ars.2017.7394
  32. Rodriguez H.O., 2020, HEART RES OPEN J, V7, P11, DOI [10.17140/HROJ-7-155, DOI 10.17140/HROJ-7-155]
  33. Salemi Vera M C, 2005, Eur J Echocardiogr, V6, P41, DOI 10.1016/j.euje.2004.06.001
  34. Sangenito Leandro S., 2020, Tropical Medicine and Infectious Disease, V5, P88, DOI 10.3390/tropicalmed5020088
  35. Seriani R, 2016, ENVIRON SCI POLLUT R, V23, P9862, DOI 10.1007/s11356-016-6228-x
  36. Siegel S., 1988, NONPARAMETRIC STAT B, V2nd
  37. Teixeira MM, 2002, TRENDS PARASITOL, V18, P262, DOI 10.1016/S1471-4922(02)02283-3
  38. Vasconcelos JF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06275-z
  39. Wen JJ, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006687
  40. WHO, 2020, TRANSFORMATION NEEDE
  41. Wold LE, 2012, CIRC-HEART FAIL, V5, P452, DOI 10.1161/CIRCHEARTFAILURE.112.966580