Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
LAUDICELLA, Riccardo
RUESCHOFF, Jan H.
BRADA, Muriel D.
HAUSMANN, Daniel
MEBERT, Iliana
MAURER, Alexander
HERMANNS, Thomas
EBERLI, Daniel
RUPP, Niels J.
Citação
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, v.49, n.11, p.3917-3928, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose Recently, a significant association was shown between novel growth patterns on histopathology of prostate cancer (PCa) and prostate-specific membrane antigen (PSMA) uptake on [Ga-68]PSMA-PET. It is the aim of this study to evaluate the association between these growth patterns and ADC (mm(2)/1000 s) values in comparison to [Ga-68]PSMA uptake on PET/MRI. Methods We retrospectively evaluated patients who underwent [Ga-68]PSMA PET/MRI for staging or biopsy guidance, followed by radical prostatectomy at our institution between 07/2016 and 01/2020. The dominant lesion per patient was selected based on histopathology and correlated to PET/MRI in a multidisciplinary meeting, and quantified using SUVmax for PSMA uptake and ADC(mean) for diffusion restriction. PCa growth pattern was classified as expansive (EXP) or infiltrative (INF) according to its properties of forming a tumoral mass or infiltrating diffusely between benign glands by two independent pathologists. Furthermore, the corresponding WHO2016 ISUP tumor grade was evaluated. The t test was used to compare means, Pearson's test for categorical correlation, Cohen's kappa test for interrater agreement, and ROC curve to determine the best cutoff. Results Sixty-two patients were included (mean PSA 11.7 +/- 12.5). The interrater agreement between both pathologists was almost perfect with kappa=0.81. While 25 lesions had an EXP-growth with an ADC(mean) of 0.777 +/- 0.109, 37 showed an INF-growth with a significantly higher ADC(mean) of 1.079 +/- 0.262 (p < 0.001). We also observed a significant difference regarding PSMA SUVmax for the EXP-growth (19.2 +/- 10.9) versus the INF-growth (9.4 +/- 6.2, p < 0.001). Within the lesions encompassing the EXP- or the INF-growth, no significant correlation between the ISUP groups and ADC(mean) could be observed (p = 0.982 and p = 0.861, respectively). Conclusion PCa with INF-growth showed significantly lower SUVmax and higher ADC(mean) values compared to PCa with EXP-growth. Within the growth groups, ADC(mean) values were independent from ISUP grading.
Palavras-chave
Diffusion-weighted imaging, MRI, Prostate cancer, PSMA PET/MRI, Radical prostatectomy
Referências
  1. Ahdoot M, 2020, NEW ENGL J MED, V382, P917, DOI 10.1056/NEJMoa1910038
  2. Chen LH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079008
  3. Epstein JI, 2016, AM J SURG PATHOL, V40, P244, DOI 10.1097/PAS.0000000000000530
  4. Evangelista L, 2021, EUR J NUCL MED MOL I, V48, P859, DOI 10.1007/s00259-020-05025-0
  5. Fendler WP, 2017, EUR J NUCL MED MOL I, V44, P1014, DOI 10.1007/s00259-017-3670-z
  6. Ferraro DA, 2021, EUR J NUCL MED MOL I, V48, P3315, DOI 10.1007/s00259-021-05261-y
  7. Ferraro DA, 2020, THERANOSTICS, V10, P6082, DOI 10.7150/thno.44584
  8. Gaur S, 2018, AM J ROENTGENOL, V211, pW33, DOI 10.2214/AJR.17.18702
  9. Heidenreich A, 2014, EUR UROL, V65, P124, DOI 10.1016/j.eururo.2013.09.046
  10. Hovels AM, 2008, CLIN RADIOL, V63, P387, DOI 10.1016/j.crad.2007.05.022
  11. Humphrey PA, 2016, EUR UROL, V70, P106, DOI 10.1016/j.eururo.2016.02.028
  12. Kasivisvanathan V, 2018, NEW ENGL J MED, V378, P1767, DOI 10.1056/NEJMoa1801993
  13. Langer DL, 2010, RADIOLOGY, V255, P485, DOI 10.1148/radiol.10091343
  14. Langer DL, 2008, RADIOLOGY, V249, P900, DOI 10.1148/radiol.2493080236
  15. Masoomian M, 2019, HISTOPATHOLOGY, V74, P474, DOI 10.1111/his.13747
  16. Moore CM, 2013, EUR UROL, V64, P544, DOI 10.1016/j.eururo.2013.03.030
  17. Mortezavi A, 2018, J UROLOGY, V200, P309, DOI 10.1016/j.juro.2018.02.067
  18. Mottet N, 2021, EUR UROL, V79, P243, DOI 10.1016/j.eururo.2020.09.042
  19. Muller BG, 2015, RADIOLOGY, V277, P741, DOI 10.1148/radiol.2015142818
  20. Nketiah G, 2017, EUR RADIOL, V27, P3050, DOI 10.1007/s00330-016-4663-1
  21. Perera M, 2020, EUR UROL, V77, P403, DOI 10.1016/j.eururo.2019.01.049
  22. Rahbar K, 2018, EUR J NUCL MED MOL I, V45, P2055, DOI 10.1007/s00259-018-4089-x
  23. Rosenkrantz AB, 2012, J UROLOGY, V187, P2032, DOI 10.1016/j.juro.2012.01.074
  24. Ruschoff JH, 2021, EUR J NUCL MED MOL I, V48, P4042, DOI 10.1007/s00259-021-05501-1
  25. Sahin M, 2021, UROL J, V18, P417, DOI 10.22037/uj.v16i7.6025
  26. Schoots IG, 2015, EUR UROL, V68, P438, DOI 10.1016/j.eururo.2014.11.037
  27. Seipel AH, 2014, HISTOPATHOLOGY, V65, P216, DOI 10.1111/his.12382
  28. Shiradkar R, 2021, EUR RADIOL, V31, P1336, DOI 10.1007/s00330-020-07214-9
  29. Siegel RL, 2020, CA-CANCER J CLIN, V70, P145, DOI 10.3322/caac.21601
  30. Turkbey B, 2019, EUR UROL, V76, P340, DOI 10.1016/j.eururo.2019.02.033
  31. van der Leest M, 2019, EUR UROL, V75, P570, DOI 10.1016/j.eururo.2018.11.023
  32. Weinreb JC, 2016, EUR UROL, V69, P16, DOI 10.1016/j.eururo.2015.08.052
  33. Woythal N, 2018, J NUCL MED, V59, P238, DOI 10.2967/jnumed.117.195172