NAFLD in Polycystic Ovary Syndrome: Association with PNPLA3 and Metabolic Features

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
BIOMEDICINES, v.10, n.11, article ID 2719, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The aim of this study was to determine the frequency of the rs738409 polymorphism in the patatin-like phospholipase domain containing 3 (PNPLA3) gene in patients with polycystic ovary syndrome (PCOS) and its impact on nonalcoholic fatty liver disease (NAFLD) risk and severity. We also evaluated other risk factors associated with NAFLD and advanced fibrosis. Methods: This was a cross-sectional study involving 163 patients with PCOS at a tertiary center. Genotyping for the PNPLA3 polymorphism was undertaken using a TaqMan assay. The degree of fibrosis was defined by transient elastography. Results: The prevalence of NAFLD was 72.4%, and the polymorphism was heterozygous in 41.7% and homozygous in 8% of patients. Homeostasis model assessment of insulin resistance >= 2.5 was the main factor associated with the risk of developing NAFLD (OR = 4.313, p = 0.022), and its effect was amplified by the polymorphism (OR = 12.198, p = 0.017). Age > 32 years also conferred a higher risk for NAFLD. HDL values >= 50 mg/dL conferred protection against the outcome. Metabolic syndrome (OR = 13.030, p = 0.020) and AST > 32 U/L (OR = 9.039, p = 0.009) were independent risk factors for advanced fibrosis. Conclusions: In women with PCOS, metabolic characteristics are more relevant than PNPLA3 polymorphism regarding the risk for NAFLD and its advanced forms, but these factors can act synergistically, increasing disease risk.
Palavras-chave
NAFLD, PCOS, insulin resistance, patatin-like phospholipase domain containing 3
Referências
  1. Angulo P, 2007, HEPATOLOGY, V45, P846, DOI 10.1002/hep.21496
  2. Armandi A, 2021, METABOLITES, V11, DOI 10.3390/metabo11030155
  3. Azziz R, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.57
  4. Brzozowska MM, 2009, J GASTROEN HEPATOL, V24, P243, DOI 10.1111/j.1440-1746.2008.05740.x
  5. Chalasani N, 2012, GASTROENTEROLOGY, V142, P1592, DOI 10.1053/j.gastro.2012.04.001
  6. Chang J, 2004, FERTIL STERIL, V81, P19, DOI 10.1016/j.fertnstert.2003.10.004
  7. Cotter TG, 2020, GASTROENTEROLOGY, V158, P1851, DOI 10.1053/j.gastro.2020.01.052
  8. de Ledinghen V, 2010, EXPERT REV MED DEVIC, V7, P811, DOI [10.1586/erd.10.46, 10.1586/ERD.10.46]
  9. Dokras A, 2017, FERTIL STERIL, V107, P1380, DOI 10.1016/j.fertnstert.2017.04.011
  10. Falcetta P, 2021, J ENDOCRINOL INVEST, V44, P2725, DOI 10.1007/s40618-021-01594-5
  11. Grundy SM, 2005, CIRCULATION, V112, P2735, DOI 10.1161/CIRCULATIONAHA.105.169404
  12. Handelsman Y, 2015, ENDOCR PRACT, V21, P1, DOI [10.4158/EP15672.GLSUPPL, 10.4158/EP15672.GL]
  13. Hossain N, 2011, SCAND J GASTROENTERO, V46, P479, DOI 10.3109/00365521.2010.539251
  14. Huang C, 2021, CLIN RES HEPATOL GAS, V45, DOI 10.1016/j.clinre.2020.08.006
  15. Kanwar P, 2016, BMJ OPEN GASTROENTER, V3, DOI 10.1136/bmjgast-2016-000114
  16. Legro RS, 2013, J CLIN ENDOCR METAB, V98, P4565, DOI 10.1210/jc.2013-2350
  17. Maciejewska D, 2015, WORLD J GASTROENTERO, V21, P301, DOI 10.3748/wjg.v21.i1.301
  18. Macut D, 2016, HUM REPROD, V31, P1347, DOI 10.1093/humrep/dew076
  19. Macut D, 2017, EUR J ENDOCRINOL, V177, pR145, DOI 10.1530/EJE-16-1063
  20. Malgorzata S, 2017, PROSTAG LEUKOTR ESS, V126, P105, DOI 10.1016/j.plefa.2017.09.001
  21. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  22. Oliveira AIN, 2021, BMC GASTROENTEROL, V21, DOI 10.1186/s12876-021-01654-3
  23. Paschou SA, 2020, ENDOCRINE, V67, P1, DOI 10.1007/s12020-019-02085-7
  24. Ramezani-Binabaj M, 2014, HEPAT MON, V14, DOI 10.5812/hepatmon.23235
  25. Rocha ALL, 2017, J ENDOCRINOL INVEST, V40, P1279, DOI 10.1007/s40618-017-0708-9
  26. Romeo S, 2008, NAT GENET, V40, P1461, DOI 10.1038/ng.257
  27. Sasso M, 2010, ULTRASOUND MED BIOL, V36, P1825, DOI 10.1016/j.ultrasmedbio.2010.07.005
  28. Setji TL, 2006, J CLIN ENDOCR METAB, V91, P1741, DOI 10.1210/jc.2005-2774
  29. Sookoian S, 2009, J LIPID RES, V50, P2111, DOI 10.1194/jlr.P900013-JLR200
  30. Stender S, 2017, NAT GENET, V49, P842, DOI 10.1038/ng.3855
  31. Sterling RK, 2006, HEPATOLOGY, V43, P1317, DOI 10.1002/hep.21178
  32. Tai CM, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000003120
  33. Teede HJ, 2018, FERTIL STERIL, V110, P364, DOI 10.1016/j.fertnstert.2018.05.004
  34. Trojak A, 2013, MED SCI MONITOR, V19, P1167, DOI 10.12659/MSM.889649
  35. Vasques ACJ, 2008, ARQ BRAS ENDOCRINOL, V52, P32, DOI 10.1590/S0004-27302008000100006
  36. Wang JZ, 2018, WORLD J CLIN CASES, V6, P167, DOI 10.12998/wjcc.v6.i8.167
  37. Whelton PK, 2018, J AM COLL CARDIOL, V71, P2275, DOI 10.1016/j.jacc.2018.03.016
  38. WHO Consultation, 2000, WHO TECH REP SER, V894, P1
  39. Wong GLH, 2013, CLIN GASTROENTEROL H, V11, P295, DOI 10.1016/j.cgh.2012.09.025
  40. Wong VWS, 2019, GUT, V68, P2057, DOI 10.1136/gutjnl-2018-317334
  41. Younossi ZM, 2019, J HEPATOL, V71, P793, DOI 10.1016/j.jhep.2019.06.021
  42. Zhang JH, 2018, EXP THER MED, V15, P4259, DOI 10.3892/etm.2018.5932