Diagnostic yield of a multigene sequencing approach in children classified as idiopathic short stature

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOSCIENTIFICA LTD
Autores
MALAQUIAS, Alexsandra Christianne
COLLETT-SOLBERG, Paulo Ferrez
GOMES, Nathalia L. R. A.
TIBURCIO, Angelica M. F. P.
SOUZA, Micheline A. R.
Citação
ENDOCRINE CONNECTIONS, v.11, n.12, article ID e220214, 10p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectiveMost children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methodsWe selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. ResultsWe identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS <= or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. ConclusionA multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
Palavras-chave
idiopathic short stature, multigene sequencing analysis, genetic, mutation
Referências
  1. Cohen P, 2008, J CLIN ENDOCR METAB, V93, P4210, DOI 10.1210/jc.2008-0509
  2. Collett-Solberg PF, 2019, HORM RES PAEDIAT, V92, P1, DOI 10.1159/000502231
  3. Collett-Solberg PF, 2019, GROWTH HORM IGF RES, V44, P20, DOI 10.1016/j.ghir.2018.12.004
  4. Correa FA, 2017, ARCH ENDOCRIN METAB, V61, P633, DOI 10.1590/2359-3997000000311
  5. Dauber A, 2019, J CLIN ENDOCR METAB, V104, P2766, DOI 10.1210/jc.2019-00019
  6. Fan X, 2021, J GENET GENOMICS, V48, P396, DOI 10.1016/j.jgg.2021.02.008
  7. Ferreira LV, 2005, J CLIN ENDOCR METAB, V90, P5156, DOI 10.1210/jc.2004-2559
  8. Fredriks AM, 2005, ARCH DIS CHILD, V90, P807, DOI 10.1136/adc.2004.050799
  9. Freire BL, 2019, J CLIN ENDOCR METAB, V104, P2023, DOI 10.1210/jc.2018-01971
  10. Funari MFA, 2019, CLIN GENET, V96, P261, DOI 10.1111/cge.13587
  11. Hattori A, 2017, ENDOCR J, V64, P947, DOI 10.1507/endocrj.EJ17-0150
  12. Hauer NN, 2018, GENET MED, V20, P630, DOI 10.1038/gim.2017.159
  13. Huang Z, 2018, CELL PHYSIOL BIOCHEM, V49, P295, DOI 10.1159/000492879
  14. Inoue-Lima TH, 2019, J PEDIATR ENDOCR MET, V32, P173, DOI 10.1515/jpem-2018-0435
  15. Jorge AAL, 2007, CLIN ENDOCRINOL, V66, P130, DOI 10.1111/j.1365-2265.2006.02698.x
  16. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  17. Kuczmarski RJ., 2002, ADV DATA, P1
  18. LEPPIG KA, 1988, AM J DIS CHILD, V142, P1274, DOI 10.1001/archpedi.1988.02150120028024
  19. Lerario AM, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1913
  20. Li J, 2012, BIOINFORMATICS, V28, P1307, DOI 10.1093/bioinformatics/bts146
  21. Li X., 2022, HORM RES PAEDIAT, V107, P972, DOI 10.1210/clinem/dgab863
  22. Marouli E, 2017, NATURE, V542, P186, DOI 10.1038/nature21039
  23. Narayanan DL, 2021, EUR J HUM GENET, V29, P1774, DOI 10.1038/s41431-021-00933-7
  24. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  25. Perchard R, 2020, J ENDOCR SOC, V4, DOI 10.1210/jendso/bvaa105
  26. Plachy L, 2021, J CLIN ENDOCR METAB, V106, P1742, DOI 10.1210/clinem/dgab084
  27. Plachy L, 2019, J CLIN ENDOCR METAB, V104, P4273, DOI 10.1210/jc.2018-02288
  28. Pyle SI., 1959, RADIOGRAPHIC ATLAS S, P272
  29. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  30. Sentchordi-Montane L, 2021, EUR J ENDOCRINOL, V185, P691, DOI 10.1530/EJE-21-0557
  31. Silventoinen K, 2003, TWIN RES, V6, P399, DOI 10.1375/136905203770326402
  32. Vasques GA, 2019, ARCH ENDOCRIN METAB, V63, P70, DOI 10.20945/2359-3997000000105
  33. Vasques GA, 2018, J CLIN ENDOCR METAB, V103, P604, DOI 10.1210/jc.2017-02026
  34. Vasques GA, 2013, J CLIN ENDOCR METAB, V98, pE1636, DOI 10.1210/jc.2013-2142
  35. Wang SR, 2013, J CLIN ENDOCR METAB, V98, pE1428, DOI 10.1210/jc.2013-1534
  36. Wood AR, 2014, NAT GENET, V46, P1173, DOI 10.1038/ng.3097
  37. Yang LL, 2018, BMC MED GENET, V19, DOI 10.1186/s12881-018-0730-6
  38. Yengo L, 2018, HUM MOL GENET, V27, P3641, DOI 10.1093/hmg/ddy271