Upregulation of Innate Antiviral Restricting Factor Expression in the Cord Blood and Decidual Tissue of HIV-Infected Mothers

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
PEREIRA, Natalli Zanete
CARDOSO, Elaine Cristina
BRANCO, Anna Claudia Calvielli Castelo
OLIVEIRA FILHO, Joao Bosco de
Citação
PLOS ONE, v.8, n.12, article ID e84917, 11p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5 alpha (TRIM-5 alpha), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-beta, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and alpha-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5 alpha protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-beta mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine whether this upregulation of antiviral factors during the perinatal period has a protective effect against HIV-1 infection.
Palavras-chave
Referências
  1. Abrahams VM, 2006, HUM REPROD, V21, P2432, DOI 10.1093/humrep/del178
  2. Abramczuk BM, 2011, CLIN VACCINE IMMUNOL, V18, P1406, DOI 10.1128/CVI.05065-11
  3. Adkins B, 2004, NAT REV IMMUNOL, V4, P553, DOI 10.1038/nri1394
  4. Agangi Annalisa, 2005, BJOG, V112, P881
  5. Amoedo ND, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024118
  6. Arhel NJ, 2008, BLOOD, V112, P3772, DOI 10.1182/blood-2008-04-151761
  7. Barr SD, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000007
  8. Biasin M, 2007, J INFECT DIS, V195, P960, DOI 10.1086/511988
  9. Bosire R, 2007, BREASTFEED MED, V2, P129, DOI 10.1089/bfm.2007.0009
  10. Bunupuradah T, 2012, AIDS RES THER, V9, DOI 10.1186/1742-6405-9-34
  11. Burdette DL, 2013, NAT IMMUNOL, V14, P19, DOI 10.1038/ni.2491
  12. Cardoso EC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067036
  13. Farquhar C, 2008, CLIN EXP IMMUNOL, V153, P37, DOI 10.1111/j.1365-2249.2008.03664.x
  14. Farquhar C, 2005, CURR HIV RES, V3, P361, DOI 10.2174/157016205774370393
  15. Feiterna-Sperling C, 2007, JAIDS-J ACQ IMM DEF, V45, P43, DOI 10.1097/QAI.0b013e318042d5e3
  16. Futata EA, 2012, EXPERT REV ANTI-INFE, V10, P289, DOI [10.1586/eri.12.9, 10.1586/ERI.12.9]
  17. Hattlmann CJ, 2012, MOL BIOL INT, V2012, DOI 10.1155/2012/153415
  18. Holm CK, 2012, NAT IMMUNOL, V13, P737, DOI 10.1038/ni.2350
  19. Ishikawa H, 2008, NATURE, V455, P674, DOI 10.1038/nature07317
  20. Kochs G, 2002, P NATL ACAD SCI USA, V99, P3153, DOI 10.1073/pnas.052430399
  21. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  22. Lohman-Payne B, 2010, CLIN PERINATOL, V37, P787, DOI 10.1016/j.clp.2010.08.005
  23. Mangeat B, 2003, NATURE, V424, P99, DOI 10.1038/nature01709
  24. Mariani R, 2003, CELL, V114, P21, DOI 10.1016/S0092-8674(03)00515-4
  25. Marin M, 2003, NAT MED, V9, P1398, DOI 10.1038/nm946
  26. Mazzola TN, 2011, AIDS, V25, P2079, DOI 10.1097/QAD.0b013e32834bba0a
  27. Meddows-Taylor S, 2006, J GEN VIROL, V87, P2055, DOI 10.1099/vir.0.81709-0
  28. Mous K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033934
  29. Neil SJD, 2008, NATURE, V451, P425, DOI 10.1038/nature06553
  30. Ozato K, 2008, NAT REV IMMUNOL, V8, P849, DOI 10.1038/nri2413
  31. Perez-Caballero D, 2009, CELL, V139, P499, DOI 10.1016/j.cell.2009.08.039
  32. Sanchez-Rodriguez EN, 2011, REPROD BIOL ENDOCRIN, V9, DOI 10.1186/1477-7827-9-8
  33. Sewram S, 2009, J INFECT DIS, V199, P1657, DOI 10.1086/598861
  34. Singh KK, 2013, JAIDS-J ACQ IMM DEF, V62, P197, DOI 10.1097/QAI.0b013e31827ab612
  35. Speelmon EC, 2006, J VIROL, V80, P2463, DOI 10.1128/JVI.80.5.2463-2471.2006
  36. Takahata Y, 2003, ACTA PAEDIATR, V92, P659, DOI 10.1080/08035250310002614
  37. Tomescu C, 2011, CLIN EXP IMMUNOL, V164, P158, DOI 10.1111/j.1365-2249.2011.04379.x
  38. Turan K, 2004, NUCLEIC ACIDS RES, V32, P643, DOI 10.1093/nar/gkh192
  39. Uchide N, 2002, BIOL PHARM BULL, V25, P109, DOI 10.1248/bpb.25.109
  40. Vazquez-Perez JA, 2009, RETROVIROLOGY, V6, DOI 10.1186/1742-4690-6-23
  41. Vince GS, 2000, BIOCHEM SOC T, V28, P191
  42. VONWUSSOW P, 1990, AIDS, V4, P119, DOI 10.1097/00002030-199002000-00004
  43. Ziske J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055633